Theoretica
A C++ numerical and automatic mathematical library
algebra.h
Go to the documentation of this file.
1 
18 
19 #ifndef THEORETICA_ALGEBRA_H
20 #define THEORETICA_ALGEBRA_H
21 
22 #include "../complex/complex_types.h"
23 #include "../core/core_traits.h"
24 #include "../core/error.h"
25 
26 
27 namespace theoretica {
28 
29 
31  namespace algebra {
32 
33 
34  // Operations involving one matrix or vector
35 
36 
43  template<typename Matrix>
44  inline Matrix& mat_error(Matrix& m) {
45 
46  using Type = matrix_element_t<Matrix>;
47 
48  for (unsigned int i = 0; i < m.rows(); ++i)
49  for (unsigned int j = 0; j < m.cols(); ++j)
50  m(i, j) = (Type) (i == j ? nan() : 0);
51 
52  return m;
53  }
54 
55 
61  template<typename Vector>
62  inline Vector& vec_error(Vector& v) {
63 
64  using Type = vector_element_t<Vector>;
65 
66  for (unsigned int i = 0; i < v.size(); ++i)
67  v[i] = Type(nan());
68 
69  return v;
70  }
71 
72 
76  template<typename Matrix>
77  inline Matrix& make_identity(Matrix& m) {
78 
79  using Type = matrix_element_t<Matrix>;
80 
81  for (unsigned int i = 0; i < m.rows(); ++i)
82  for (unsigned int j = 0; j < m.cols(); ++j)
83  m(i, j) = (Type) (i == j ? 1 : 0);
84 
85  return m;
86  }
87 
88 
92  template<typename Matrix>
93  inline Matrix& mat_zeroes(Matrix& m) {
94 
95  using Type = matrix_element_t<Matrix>;
96 
97  for (unsigned int i = 0; i < m.rows(); ++i)
98  for (unsigned int j = 0; j < m.cols(); ++j)
99  m(i, j) = (Type) 0;
100 
101  return m;
102  }
103 
104 
108  template<typename Vector>
109  inline Vector& vec_zeroes(Vector& v) {
110 
111  using Type = vector_element_t<Vector>;
112 
113  for (unsigned int i = 0; i < v.size(); ++i)
114  v[i] = Type(0.0);
115 
116  return v;
117  }
118 
119 
124  template<typename Matrix1, typename Matrix2>
125  inline Matrix1& mat_copy(Matrix1& dest, const Matrix2& src) {
126 
127  dest.resize(src.rows(), src.cols());
128 
129  for (unsigned int i = 0; i < src.rows(); ++i)
130  for (unsigned int j = 0; j < src.cols(); ++j)
131  dest(i, j) = src(i, j);
132 
133  return dest;
134  }
135 
136 
142  template<typename Vector1, typename Vector2>
143  inline Vector1& vec_copy(Vector1& dest, const Vector2& src) {
144 
145  dest.resize(src.size());
146 
147  for (unsigned int i = 0; i < src.size(); ++i)
148  dest[i] = src[i];
149 
150  return dest;
151  }
152 
153 
160  template<typename Matrix>
161  inline Matrix& mat_swap_rows(Matrix& A, unsigned int row1, unsigned int row2) {
162 
163  using Type = matrix_element_t<Matrix>;
164 
165  if (row1 >= A.rows()) {
166  TH_MATH_ERROR("algebra::mat_swap_rows", row1, INVALID_ARGUMENT);
167  return mat_error(A);
168  }
169 
170  if (row2 >= A.rows()) {
171  TH_MATH_ERROR("algebra::mat_swap_rows", row2, INVALID_ARGUMENT);
172  return mat_error(A);
173  }
174 
175  if (row1 == row2)
176  return A;
177 
178  for (unsigned int j = 0; j < A.cols(); ++j) {
179 
180  const Type tmp = A(row1, j);
181 
182  A(row1, j) = A(row2, j);
183  A(row2, j) = tmp;
184  }
185 
186  return A;
187  }
188 
189 
196  template<typename Matrix>
197  inline Matrix& mat_swap_cols(Matrix& A, unsigned int col1, unsigned int col2) {
198 
199  using Type = matrix_element_t<Matrix>;
200 
201  if (col1 >= A.cols()) {
202  TH_MATH_ERROR("algebra::mat_swap_cols", col1, INVALID_ARGUMENT);
203  return mat_error(A);
204  }
205 
206  if (col2 >= A.cols()) {
207  TH_MATH_ERROR("algebra::mat_swap_cols", col2, INVALID_ARGUMENT);
208  return mat_error(A);
209  }
210 
211  if (col1 == col2)
212  return A;
213 
214  for (unsigned int i = 0; i < A.cols(); ++i) {
215 
216  const Type tmp = A(i, col1);
217 
218  A(i, col1) = A(i, col2);
219  A(i, col2) = tmp;
220  }
221 
222  return A;
223  }
224 
225 
232  template<typename Matrix, typename Type = matrix_element_t<Matrix>>
233  inline Matrix& mat_shift_diagonal(Matrix& A, const Type& sigma) {
234 
235  const unsigned int count = min(A.rows(), A.cols());
236 
237  for (unsigned int i = 0; i < count; ++i)
238  A(i, i) += sigma;
239 
240  return A;
241  }
242 
243 
251  template<typename Type>
252  inline auto pair_inner_product(const Type& v_i, const Type& w_i) {
253  return v_i * w_i;
254  }
255 
263  template<typename Type>
264  inline auto pair_inner_product(const complex<Type>& v_i, const complex<Type>& w_i) {
265  return v_i * conjugate(w_i);
266  }
267 
268 
274  template<typename Vector>
275  inline auto sqr_norm(const Vector& v) {
276 
277  auto sum = pair_inner_product(v[0], v[0]);
278 
279  // Use conjugation for complex numbers
280  for (unsigned int i = 1; i < v.size(); ++i)
281  sum += pair_inner_product(v[i], v[i]);
282 
283  return sum;
284  }
285 
286 
291  template<typename Vector>
292  inline auto norm(const Vector& v) {
293 
295  }
296 
297 
301  template<typename Vector>
302  inline Vector normalize(const Vector& v) {
303 
304  Vector r;
305  r.resize(v.size());
306  vec_copy(r, v);
307 
308  const auto m = norm(v);
309 
310  if(abs(m) < MACH_EPSILON) {
311  TH_MATH_ERROR("algebra::normalize", m, DIV_BY_ZERO);
312  vec_error(r);
313  return r;
314  }
315 
316  for (unsigned int i = 0; i < r.size(); ++i)
317  r[i] /= m;
318 
319  return r;
320  }
321 
322 
326  template<typename Vector>
327  inline Vector& make_normalized(Vector& v) {
328 
329  const auto m = norm(v);
330 
331  if(abs(m) < MACH_EPSILON) {
332  TH_MATH_ERROR("algebra::make_normalized", m, DIV_BY_ZERO);
333  vec_error(v);
334  return v;
335  }
336 
337  for (unsigned int i = 0; i < v.size(); ++i)
338  v[i] /= m;
339 
340  return v;
341  }
342 
343 
350  template<typename Vector1, typename Vector2>
351  inline auto dot(const Vector1& v, const Vector2& w) {
352 
353  if(v.size() != w.size()) {
354  TH_MATH_ERROR("algebra::dot", v.size(), INVALID_ARGUMENT);
355  return vector_element_t<Vector1>(nan());
356  }
357 
358  auto sum = pair_inner_product(v[0], w[0]);
359 
360  // Use conjugation for complex numbers
361  for (unsigned int i = 1; i < v.size(); ++i)
362  sum += pair_inner_product(v[i], w[i]);
363 
364  return sum;
365  }
366 
367 
372  template<typename Vector1, typename Vector2>
373  inline Vector1 cross(const Vector1& v1, const Vector2& v2) {
374 
375  Vector1 v3;
376  v3.resize(3);
377 
378  if(v1.size() != 3) {
379  TH_MATH_ERROR("algebra::cross", v1.size(), INVALID_ARGUMENT);
380  vec_error(v3);
381  return v3;
382  }
383 
384  if(v2.size() != 3) {
385  TH_MATH_ERROR("algebra::cross", v2.size(), INVALID_ARGUMENT);
386  vec_error(v3);
387  return v3;
388  }
389 
390  v3[0] = v1[1] * v2[2] - v1[2] * v2[1];
391  v3[1] = v1[2] * v2[0] - v1[0] * v2[2];
392  v3[2] = v1[0] * v2[1] - v1[1] * v2[0];
393 
394  return v3;
395  }
396 
397 
402  template<typename Matrix, typename MatrixT = Matrix>
403  inline MatrixT transpose(const Matrix& m) {
404 
405  MatrixT res;
406  res.resize(m.cols(), m.rows());
407 
408  for (unsigned int i = 0; i < m.rows(); ++i)
409  for (unsigned int j = 0; j < m.cols(); ++j)
410  res(j, i) = m(i, j);
411 
412  return res;
413  }
414 
415 
419  template<typename Matrix>
420  inline Matrix& make_transposed(Matrix& m) {
421 
422  if(m.rows() != m.cols()) {
423  TH_MATH_ERROR("algebra::make_transposed", m.rows(), INVALID_ARGUMENT);
424  mat_error(m);
425  return m;
426  }
427 
428  for (unsigned int i = 0; i < m.rows(); ++i) {
429  for (unsigned int j = 0; j < i; ++j) {
430 
431  const auto buff = m(i, j);
432  m(i, j) = m(j, i);
433  m(j, i) = buff;
434  }
435  }
436 
437  return m;
438  }
439 
440 
447  template<typename Matrix1, typename Matrix2>
448  inline Matrix1& transpose(Matrix1& dest, const Matrix2& src) {
449 
450  // Check that the two matrices have the correct
451  // number of rows and columns
452  if(src.rows() != dest.cols()) {
453  TH_MATH_ERROR("algebra::transpose", src.rows(), INVALID_ARGUMENT);
454  mat_error(dest);
455  return dest;
456  }
457 
458  if(src.cols() != dest.rows()) {
459  TH_MATH_ERROR("algebra::transpose", src.cols(), INVALID_ARGUMENT);
460  mat_error(dest);
461  return dest;
462  }
463 
464  // Overwrite dest with the transpose of src
465  for (unsigned int i = 0; i < src.rows(); ++i)
466  for (unsigned int j = 0; j < src.cols(); ++j)
467  dest(j, i) = src(i, j);
468 
469  return dest;
470  }
471 
472 
477  template<typename Matrix, typename MatrixT = Matrix>
478  inline MatrixT hermitian(const Matrix& m) {
479 
480  MatrixT res;
481  res.resize(m.cols(), m.rows());
482 
483  for (unsigned int i = 0; i < m.rows(); ++i)
484  for (unsigned int j = 0; j < m.cols(); ++j)
485  res(j, i) = conjugate(m(i, j));
486 
487  return res;
488  }
489 
490 
496  template<typename Matrix>
497  inline Matrix& make_hermitian(Matrix& m) {
498 
499  if(m.rows() != m.cols()) {
500  TH_MATH_ERROR("algebra::hermitian", m.rows(), INVALID_ARGUMENT);
501  mat_error(m);
502  return m;
503  }
504 
505  for (unsigned int i = 0; i < m.rows(); ++i) {
506  for (unsigned int j = 0; j < i; ++j) {
507 
508  const auto buff = m(i, j);
509  m(i, j) = conjugate(m(j, i));
510  m(j, i) = conjugate(buff);
511  }
512  }
513 
514  return m;
515  }
516 
517 
525  template<typename Matrix1, typename Matrix2>
526  inline Matrix1& hermitian(Matrix1& dest, const Matrix2& src) {
527 
528  // Check that the two matrices have the correct
529  // number of rows and columns
530  if(src.rows() != dest.cols()) {
531  TH_MATH_ERROR("algebra::hermitian", src.rows(), INVALID_ARGUMENT);
532  mat_error(dest);
533  return dest;
534  }
535 
536  if(src.cols() != dest.rows()) {
537  TH_MATH_ERROR("algebra::hermitian", src.cols(), INVALID_ARGUMENT);
538  mat_error(dest);
539  return dest;
540  }
541 
542  // Overwrite dest with the transpose of src
543  for (unsigned int i = 0; i < src.rows(); ++i)
544  for (unsigned int j = 0; j < src.cols(); ++j)
545  dest(j, i) = conjugate(src(i, j));
546 
547  return dest;
548  }
549 
550 
554  template<typename Matrix>
555  inline auto trace(const Matrix& m) {
556 
557  auto sum = m(0, 0);
558  const size_t n = min(m.rows(), m.cols());
559 
560  for (unsigned int i = 1; i < n; ++i)
561  sum += m(i, i);
562 
563  return sum;
564  }
565 
566 
572  template<typename Matrix>
573  inline auto diagonal_product(const Matrix& m) {
574 
575  auto mul = m(0, 0);
576  const size_t n = min(m.rows(), m.cols());
577 
578  for (unsigned int i = 1; i < n; ++i)
579  mul *= m(i, i);
580 
581  return mul;
582  }
583 
584 
589  template<typename Field, typename Matrix>
590  inline Matrix& mat_scalmul(Field a, Matrix& m) {
591 
592  for (unsigned int i = 0; i < m.rows(); ++i)
593  for (unsigned int j = 0; j < m.cols(); ++j)
594  m(i, j) *= a;
595 
596  return m;
597  }
598 
599 
606  template<typename Field, typename Matrix1, typename Matrix2>
607  inline Matrix1& mat_scalmul(Matrix1& dest, Field a, const Matrix2& src) {
608 
609  if(src.rows() != dest.rows()) {
610  TH_MATH_ERROR("algebra::mat_scalmul", src.rows(), INVALID_ARGUMENT);
611  mat_error(dest);
612  return dest;
613  }
614 
615  if(src.cols() != dest.cols()) {
616  TH_MATH_ERROR("algebra::mat_scalmul", src.cols(), INVALID_ARGUMENT);
617  mat_error(dest);
618  return dest;
619  }
620 
621  for (unsigned int i = 0; i < src.rows(); ++i)
622  for (unsigned int j = 0; j < src.cols(); ++j)
623  dest(i, j) = a * src(i, j);
624 
625  return dest;
626  }
627 
628 
633  template<typename Field, typename Vector>
634  inline Vector& vec_scalmul(Field a, Vector& v) {
635 
636  for (unsigned int i = 0; i < v.size(); ++i)
637  v[i] *= a;
638 
639  return v;
640  }
641 
642 
649  template<typename Field, typename Vector1, typename Vector2>
650  inline Vector1& vec_scalmul(Vector1& dest, Field a, const Vector2& src) {
651 
652  if(src.size() != dest.size()) {
653  TH_MATH_ERROR("algebra::vec_scalmul", src.size(), INVALID_ARGUMENT);
654  vec_error(dest);
655  return dest;
656  }
657 
658  for (unsigned int i = 0; i < src.size(); ++i)
659  dest[i] = a * src[i];
660 
661  return dest;
662  }
663 
664 
665  // Operations involving a matrix and a vector
666 
667 
674  template<typename Matrix, typename Vector>
675  inline Vector& apply_transform(const Matrix& A, Vector& v) {
676 
677  if(v.size() != A.cols()) {
678  TH_MATH_ERROR("algebra::apply_transform", v.size(), INVALID_ARGUMENT);
679  vec_error(v);
680  return v;
681  }
682 
683  Vector res;
684  res.resize(v.size());
685  vec_zeroes(res);
686 
687  for (unsigned int i = 0; i < A.rows(); ++i)
688  for (unsigned int j = 0; j < A.cols(); ++j)
689  res[i] += A(i, j) * v[j];
690 
691  vec_copy(res, v);
692  return v;
693  }
694 
695 
701  template<typename Matrix, typename Vector>
702  inline Vector transform(const Matrix& A, const Vector& v) {
703 
704  Vector res;
705  res.resize(v.size());
706 
707  if(v.size() != A.cols()) {
708  TH_MATH_ERROR("algebra::transform", v.size(), INVALID_ARGUMENT);
709  vec_error(res);
710  return res;
711  }
712 
713  vec_zeroes(res);
714 
715  for (unsigned int i = 0; i < A.rows(); ++i)
716  for (unsigned int j = 0; j < A.cols(); ++j)
717  res[i] += A(i, j) * v[j];
718 
719  return res;
720  }
721 
722 
730  template<typename Matrix, typename Vector1, typename Vector2>
731  inline Vector1& transform(Vector1& res, const Matrix& A, const Vector2& v) {
732 
733  if(v.size() != A.cols()) {
734  TH_MATH_ERROR("algebra::transform", v.size(), INVALID_ARGUMENT);
735  vec_error(res);
736  return res;
737  }
738 
739  if(res.size() != v.size()) {
740  TH_MATH_ERROR("algebra::transform", res.size(), INVALID_ARGUMENT);
741  vec_error(res);
742  return res;
743  }
744 
745  vec_zeroes(res);
746 
747  for (unsigned int i = 0; i < A.rows(); ++i)
748  for (unsigned int j = 0; j < A.cols(); ++j)
749  res[i] += A(i, j) * v[j];
750 
751  return res;
752  }
753 
754 
755  // Operations involving multiple matrices or vectors
756 
757 
763  template<typename Matrix1, typename Matrix2>
764  inline Matrix2& mat_sum(Matrix1& A, const Matrix2& B) {
765 
766  if(A.rows() != B.rows()) {
767  TH_MATH_ERROR("algebra::mat_sum", A.rows(), INVALID_ARGUMENT);
768  mat_error(A);
769  return A;
770  }
771 
772  if(A.cols() != B.cols()) {
773  TH_MATH_ERROR("algebra::mat_sum", A.cols(), INVALID_ARGUMENT);
774  mat_error(A);
775  return A;
776  }
777 
778  for (unsigned int i = 0; i < A.rows(); ++i)
779  for (unsigned int j = 0; j < A.cols(); ++j)
780  A(i, j) = A(i, j) + B(i, j);
781 
782  return A;
783  }
784 
785 
791  template<typename Matrix1, typename Matrix2, typename Matrix3>
792  inline Matrix1& mat_sum(Matrix1& res, const Matrix2& A, const Matrix3& B) {
793 
794  if(A.rows() != B.rows()) {
795  TH_MATH_ERROR("algebra::mat_sum", A.rows(), INVALID_ARGUMENT);
796  mat_error(res);
797  return res;
798  }
799 
800  if(A.cols() != B.cols()) {
801  TH_MATH_ERROR("algebra::mat_sum", A.cols(), INVALID_ARGUMENT);
802  mat_error(res);
803  return res;
804  }
805 
806  if(res.rows() != A.rows()) {
807  TH_MATH_ERROR("algebra::mat_sum", res.rows(), INVALID_ARGUMENT);
808  mat_error(res);
809  return res;
810  }
811 
812  if(res.cols() != A.cols()) {
813  TH_MATH_ERROR("algebra::mat_sum", res.cols(), INVALID_ARGUMENT);
814  mat_error(res);
815  return res;
816  }
817 
818  for (unsigned int i = 0; i < A.rows(); ++i)
819  for (unsigned int j = 0; j < A.cols(); ++j)
820  res(i, j) = A(i, j) + B(i, j);
821 
822  return res;
823  }
824 
825 
831  template<typename Matrix1, typename Matrix2>
832  inline Matrix2& mat_diff(Matrix1& A, const Matrix2& B) {
833 
834  if(A.rows() != B.rows()) {
835  TH_MATH_ERROR("algebra::mat_diff", A.rows(), INVALID_ARGUMENT);
836  mat_error(A);
837  return A;
838  }
839 
840  if(A.cols() != B.cols()) {
841  TH_MATH_ERROR("algebra::mat_diff", A.cols(), INVALID_ARGUMENT);
842  mat_error(A);
843  return A;
844  }
845 
846  for (unsigned int i = 0; i < A.rows(); ++i)
847  for (unsigned int j = 0; j < A.cols(); ++j)
848  A(i, j) = A(i, j) - B(i, j);
849 
850  return A;
851  }
852 
853 
859  template<typename Matrix1, typename Matrix2, typename Matrix3>
860  inline Matrix1& mat_diff(Matrix1& res, const Matrix2& A, const Matrix3& B) {
861 
862  if(A.rows() != B.rows()) {
863  TH_MATH_ERROR("algebra::mat_diff", A.rows(), INVALID_ARGUMENT);
864  mat_error(res);
865  return res;
866  }
867 
868  if(A.cols() != B.cols()) {
869  TH_MATH_ERROR("algebra::mat_diff", A.cols(), INVALID_ARGUMENT);
870  mat_error(res);
871  return res;
872  }
873 
874  if(res.rows() != A.rows()) {
875  TH_MATH_ERROR("algebra::mat_diff", res.rows(), INVALID_ARGUMENT);
876  mat_error(res);
877  return res;
878  }
879 
880  if(res.cols() != A.cols()) {
881  TH_MATH_ERROR("algebra::mat_diff", res.cols(), INVALID_ARGUMENT);
882  mat_error(res);
883  return res;
884  }
885 
886  for (unsigned int i = 0; i < A.rows(); ++i)
887  for (unsigned int j = 0; j < A.cols(); ++j)
888  res(i, j) = A(i, j) - B(i, j);
889 
890  return res;
891  }
892 
893 
900  template<typename Field1, typename Matrix1, typename Field2, typename Matrix2>
901  inline Matrix2& mat_lincomb(
902  Field1 alpha, Matrix1& A, Field2 beta, const Matrix2& B) {
903 
904  if(A.rows() != B.rows()) {
905  TH_MATH_ERROR("algebra::mat_lincomb", A.rows(), INVALID_ARGUMENT);
906  mat_error(A);
907  return A;
908  }
909 
910  if(A.cols() != B.cols()) {
911  TH_MATH_ERROR("algebra::mat_lincomb", A.cols(), INVALID_ARGUMENT);
912  mat_error(A);
913  return A;
914  }
915 
916  for (unsigned int i = 0; i < A.rows(); ++i)
917  for (unsigned int j = 0; j < A.cols(); ++j)
918  A(i, j) = A(i, j) * alpha + B(i, j) * beta;
919 
920  return A;
921  }
922 
923 
933  template<typename Matrix1, typename Field1, typename Matrix2,
934  typename Field2, typename Matrix3>
935  inline Matrix1& mat_lincomb(
936  Matrix1& res, Field1 alpha, const Matrix2& A, Field2 beta, const Matrix3& B) {
937 
938  if(A.rows() != B.rows()) {
939  TH_MATH_ERROR("algebra::mat_lincomb", A.rows(), INVALID_ARGUMENT);
940  mat_error(A);
941  return A;
942  }
943 
944  if(A.cols() != B.cols()) {
945  TH_MATH_ERROR("algebra::mat_lincomb", A.cols(), INVALID_ARGUMENT);
946  mat_error(A);
947  return A;
948  }
949 
950  if(res.rows() != A.rows()) {
951  TH_MATH_ERROR("algebra::mat_lincomb", res.rows(), INVALID_ARGUMENT);
952  mat_error(res);
953  return res;
954  }
955 
956  if(res.cols() != A.cols()) {
957  TH_MATH_ERROR("algebra::mat_lincomb", res.cols(), INVALID_ARGUMENT);
958  mat_error(res);
959  return res;
960  }
961 
962  for (unsigned int i = 0; i < A.rows(); ++i)
963  for (unsigned int j = 0; j < A.cols(); ++j)
964  res(i, j) = A(i, j) * alpha + B(i, j) * beta;
965 
966  return A;
967  }
968 
969 
976  template<typename Matrix1, typename Matrix2, typename Matrix3 = Matrix1>
977  inline Matrix3 mat_mul(const Matrix1& A, const Matrix2& B) {
978 
979  Matrix3 R;
980  R.resize(A.rows(), B.cols());
981 
982  if(A.cols() != B.rows()) {
983  TH_MATH_ERROR("algebra::mat_mul", A.cols(), INVALID_ARGUMENT);
984  mat_error(R);
985  return R;
986  }
987 
988  mat_zeroes(R);
989 
990  for (unsigned int i = 0; i < A.rows(); ++i)
991  for (unsigned int j = 0; j < B.cols(); ++j)
992  for (unsigned int k = 0; k < A.cols(); ++k)
993  R(i, j) += A(i, k) * B(k, j);
994 
995  return R;
996  }
997 
998 
1006  template<typename Matrix1, typename Matrix2, typename Matrix3>
1007  inline Matrix1& mat_mul(Matrix1& R, const Matrix2& A, const Matrix3& B) {
1008 
1009  if(R.rows() != A.rows()) {
1010  TH_MATH_ERROR("algebra::mat_mul", R.rows(), INVALID_ARGUMENT);
1011  mat_error(R);
1012  return R;
1013  }
1014 
1015  if(R.cols() != B.cols()) {
1016  TH_MATH_ERROR("algebra::mat_mul", R.cols(), INVALID_ARGUMENT);
1017  mat_error(R);
1018  return R;
1019  }
1020 
1021  if(A.cols() != B.rows()) {
1022  TH_MATH_ERROR("algebra::mat_mul", A.cols(), INVALID_ARGUMENT);
1023  mat_error(R);
1024  return R;
1025  }
1026 
1027  mat_zeroes(R);
1028 
1029  for (unsigned int i = 0; i < A.rows(); ++i)
1030  for (unsigned int j = 0; j < B.cols(); ++j)
1031  for (unsigned int k = 0; k < A.cols(); ++k)
1032  R(i, j) += A(i, k) * B(k, j);
1033 
1034  return R;
1035  }
1036 
1037 
1048  template<typename Matrix1, typename Matrix2, typename Matrix3 = Matrix1>
1049  inline Matrix3 mat_transpose_mul(const Matrix1& A, const Matrix2& B) {
1050 
1051  Matrix3 R;
1052  R.resize(A.cols(), B.cols());
1053 
1054  if(A.rows() != B.rows()) {
1055  TH_MATH_ERROR("algebra::mat_transpose_mul", A.rows(), INVALID_ARGUMENT);
1056  return mat_error(R);
1057  }
1058 
1059  mat_zeroes(R);
1060 
1061  for (unsigned int i = 0; i < R.rows(); ++i)
1062  for (unsigned int j = 0; j < R.cols(); ++j)
1063  for (unsigned int k = 0; k < A.rows(); ++k)
1064  R(i, j) += A(k, i) * B(k, j);
1065 
1066  return R;
1067  }
1068 
1069 
1080  template<typename Matrix1, typename Matrix2, typename Matrix3 = Matrix1>
1081  inline Matrix3 mat_mul_transpose(const Matrix1& A, const Matrix2& B) {
1082 
1083  Matrix3 R;
1084  R.resize(A.rows(), B.rows());
1085 
1086  if(A.cols() != B.cols()) {
1087  TH_MATH_ERROR("algebra::mat_mul_transpose", A.rows(), INVALID_ARGUMENT);
1088  return mat_error(R);
1089  }
1090 
1091  mat_zeroes(R);
1092 
1093  for (unsigned int i = 0; i < R.rows(); ++i)
1094  for (unsigned int j = 0; j < R.cols(); ++j)
1095  for (unsigned int k = 0; k < A.cols(); ++k)
1096  R(i, j) += A(i, k) * B(j, k);
1097 
1098  return R;
1099  }
1100 
1101 
1108  template<typename Matrix1, typename Matrix2>
1109  inline bool mat_equals(
1110  const Matrix1& A, const Matrix2& B, real tolerance = 10 * MACH_EPSILON) {
1111 
1112  if(A.rows() != B.rows() || A.cols() != B.cols())
1113  return false;
1114 
1115  for (unsigned int i = 0; i < A.rows(); ++i) {
1116  for (unsigned int j = 0; j < A.cols(); ++j) {
1117 
1118  const auto diff = abs(A(i, j) - B(i, j));
1119 
1120  if(diff > tolerance || is_nan(diff))
1121  return false;
1122  }
1123  }
1124 
1125  return true;
1126  }
1127 
1128 
1134  template<typename Vector1, typename Vector2>
1135  inline Vector2& vec_sum(Vector1& v1, const Vector2& v2) {
1136 
1137  if(v1.size() != v2.size()) {
1138  TH_MATH_ERROR("algebra::vec_sum", v1.size(), INVALID_ARGUMENT);
1139  vec_error(v1);
1140  return v1;
1141  }
1142 
1143  for (unsigned int i = 0; i < v1.size(); ++i)
1144  v1[i] = v1[i] + v2[i];
1145 
1146  return v1;
1147  }
1148 
1149 
1155  template<typename Vector1, typename Vector2, typename Vector3>
1156  inline Vector1& vec_sum(Vector1& res, const Vector2& v1, const Vector3& v2) {
1157 
1158  if(v1.size() != v2.size()) {
1159  TH_MATH_ERROR("algebra::vec_sum", v1.size(), INVALID_ARGUMENT);
1160  vec_error(res);
1161  return res;
1162  }
1163 
1164  if(res.size() != v1.size()) {
1165  TH_MATH_ERROR("algebra::vec_sum", res.size(), INVALID_ARGUMENT);
1166  vec_error(res);
1167  return res;
1168  }
1169 
1170  for (unsigned int i = 0; i < v1.size(); ++i)
1171  res[i] = v1[i] + v2[i];
1172 
1173  return res;
1174  }
1175 
1176 
1182  template<typename Vector1, typename Vector2>
1183  inline Vector2& vec_diff(Vector1& v1, const Vector2& v2) {
1184 
1185  if(v1.size() != v2.size()) {
1186  TH_MATH_ERROR("algebra::vec_diff", v1.size(), INVALID_ARGUMENT);
1187  vec_error(v1);
1188  return v1;
1189  }
1190 
1191  for (unsigned int i = 0; i < v1.size(); ++i)
1192  v1[i] = v1[i] - v2[i];
1193 
1194  return v1;
1195  }
1196 
1197 
1203  template<typename Vector1, typename Vector2, typename Vector3>
1204  inline Vector1& vec_diff(Vector1& res, const Vector2& v1, const Vector3& v2) {
1205 
1206  if(v1.size() != v2.size()) {
1207  TH_MATH_ERROR("algebra::vec_diff", v1.size(), INVALID_ARGUMENT);
1208  vec_error(res);
1209  return res;
1210  }
1211 
1212  if(res.size() != v1.size()) {
1213  TH_MATH_ERROR("algebra::vec_diff", res.size(), INVALID_ARGUMENT);
1214  vec_error(res);
1215  return res;
1216  }
1217 
1218  for (unsigned int i = 0; i < v1.size(); ++i)
1219  res[i] = v1[i] - v2[i];
1220 
1221  return res;
1222  }
1223 
1224 
1225  // Matrix properties
1226 
1227 
1231  template<typename Matrix>
1232  inline bool is_square(const Matrix& m) {
1233  return (m.rows() == m.cols());
1234  }
1235 
1236 
1242  template<typename Matrix>
1243  inline bool is_diagonal(const Matrix& m, real tolerance = 10 * MACH_EPSILON) {
1244 
1245  for (unsigned int i = 0; i < m.rows(); ++i)
1246  for (unsigned int j = 0; j < m.cols(); ++j)
1247  if(i != j && abs(m(i, j)) > tolerance)
1248  return false;
1249 
1250  return true;
1251  }
1252 
1258  template<typename Matrix>
1259  inline bool is_symmetric(const Matrix& m, real tolerance = ALGEBRA_ELEMENT_TOL) {
1260 
1261  if(!is_square(m))
1262  return false;
1263 
1264  for (unsigned int i = 0; i < m.rows(); ++i)
1265  for (unsigned int j = 0; j < m.cols(); ++j)
1266  if(abs(m(i, j) - m(j, i)) > tolerance)
1267  return false;
1268 
1269  return true;
1270  }
1271 
1272 
1278  template<typename Matrix>
1279  inline bool is_lower_triangular(const Matrix& m, real tolerance = ALGEBRA_ELEMENT_TOL) {
1280 
1281  if(!is_square(m))
1282  return false;
1283 
1284  for (unsigned int i = 0; i < m.rows(); ++i)
1285  for (unsigned int j = i + 1; j < m.cols(); ++j)
1286  if (abs(m(i, j)) > tolerance)
1287  return false;
1288 
1289  return true;
1290  }
1291 
1292 
1298  template<typename Matrix>
1299  inline bool is_upper_triangular(const Matrix& m, real tolerance = ALGEBRA_ELEMENT_TOL) {
1300 
1301  if(!is_square(m))
1302  return false;
1303 
1304  for (unsigned int i = 0; i < m.rows(); ++i)
1305  for (unsigned int j = 0; j < i; ++j)
1306  if (abs(m(i, j)) > tolerance)
1307  return false;
1308 
1309  return true;
1310  }
1311 
1312 
1322  template<typename Matrix, enable_matrix<Matrix> = true>
1323  inline real density(const Matrix& A, real tolerance = 1E-12) {
1324 
1325  long unsigned int n = 0;
1326 
1327  for (unsigned int i = 0; i < A.rows(); ++i)
1328  for (unsigned int j = 0; j < A.cols(); ++j)
1329  if (abs(A(i, j)) > tolerance)
1330  n++;
1331 
1332  return (real(n) / A.rows()) / A.cols();
1333  }
1334 
1335 
1345  template<typename Matrix, enable_matrix<Matrix> = true>
1346  inline real sparsity(const Matrix& A, real tolerance = 1E-12) {
1347 
1348  return 1.0 - density(A, tolerance);
1349  }
1350 
1351 
1352  // Matrix decompositions
1353 
1354 
1362  template<typename Matrix1, typename Matrix2, typename Matrix3>
1363  inline void decompose_lu(const Matrix1& A, Matrix2& L, Matrix3& U) {
1364 
1365  // Check the shapes of A, L and U
1366  unsigned int err = 0;
1367 
1368  // Make sure to allocate L and U if they are empty
1369  L.resize(A.rows(), A.cols());
1370  U.resize(A.rows(), A.cols());
1371 
1372  if (!is_square(A))
1373  err = A.rows();
1374 
1375  if (A.rows() != L.rows())
1376  err = L.rows();
1377 
1378  if (A.cols() != L.cols())
1379  err = L.cols();
1380 
1381  if (A.rows() != U.rows())
1382  err = U.rows();
1383 
1384  if (A.cols() != U.cols())
1385  err = U.cols();
1386 
1387  if (err) {
1388  TH_MATH_ERROR("algebra::decompose_lu", err, INVALID_ARGUMENT);
1389  mat_error(L); mat_error(U);
1390  return;
1391  }
1392 
1393  using Type = matrix_element_t<Matrix1>;
1394 
1395  // Set the diagonal of L to 1.0
1396  for (unsigned int i = 0; i < A.rows(); ++i)
1397  L(i, i) = (Type) 1.0;
1398 
1399  // Compute L and U
1400  for(unsigned int i = 0; i < A.rows(); ++i) {
1401 
1402  for(unsigned int j = 0; j < A.rows(); ++j) {
1403 
1404  U(i, j) = A(i, j);
1405 
1406  for(unsigned int k = 0; k < i; ++k)
1407  U(i, j) -= pair_inner_product(L(i, k), U(k, j));
1408  }
1409 
1410  for(unsigned int j = i + 1; j < A.rows(); ++j) {
1411 
1412  L(j, i) = A(j, i);
1413 
1414  for(unsigned int k = 0; k < i; ++k)
1415  L(j, i) -= pair_inner_product(L(j, k), U(k, i));
1416 
1417  L(j, i) /= U(i, i);
1418  }
1419  }
1420  }
1421 
1422 
1431  template<typename Matrix>
1432  inline Matrix& decompose_lu_inplace(Matrix& A) {
1433 
1434  if (!is_square(A)) {
1435  TH_MATH_ERROR("algebra::decompose_lu_inplace", A.rows(), INVALID_ARGUMENT);
1436  mat_error(A);
1437  return A;
1438  }
1439 
1440  for(unsigned int j = 0; j < A.cols(); ++j) {
1441 
1442  for(unsigned int i = j + 1; i < A.rows(); ++i) {
1443 
1444  A(i, j) /= A(j, j);
1445 
1446  for(unsigned int k = j + 1; k < A.rows(); ++k)
1447  A(i, k) -= pair_inner_product(A(i, j), A(j, k));
1448  }
1449  }
1450 
1451  return A;
1452  }
1453 
1454 
1461  template<typename Matrix>
1462  inline Matrix decompose_cholesky(const Matrix& A) {
1463 
1464  Matrix L;
1465  L.resize(A.rows(), A.cols());
1466  using Type = matrix_element_t<Matrix>;
1467 
1468  if (!is_square(A)) {
1469  TH_MATH_ERROR("algebra::decompose_cholesky", A.rows(), INVALID_ARGUMENT);
1470  return mat_error(L);
1471  }
1472 
1473  if (!is_symmetric(A)) {
1474  TH_MATH_ERROR("algebra::decompose_cholesky", false, INVALID_ARGUMENT);
1475  return mat_error(L);
1476  }
1477 
1478  mat_zeroes(L);
1479 
1480  for (unsigned int i = 0; i < A.cols(); ++i) {
1481 
1482  for (unsigned int j = 0; j <= i; ++j) {
1483 
1484  Type sum = pair_inner_product(L(i, 0), L(j, 0));
1485 
1486  for (unsigned int k = 1; k < j; ++k)
1487  sum += pair_inner_product(L(i, k), L(j, k));
1488 
1489  if (i == j) {
1490 
1491  const Type sqr_diag = A(j, j) - sum;
1492 
1493  // Additional check to ensure that the matrix is positive definite
1494  if (sqr_diag < MACH_EPSILON) {
1495  TH_MATH_ERROR("algebra::decompose_cholesky", sqr_diag, INVALID_ARGUMENT);
1496  return mat_error(L);
1497  }
1498 
1499  L(i, j) = sqrt(sqr_diag);
1500 
1501  } else {
1502 
1503  L(i, j) = (A(i, j) - sum) / L(j, j);
1504  }
1505  }
1506  }
1507 
1508  return L;
1509  }
1510 
1511 
1517  template<typename Matrix>
1518  inline Matrix& decompose_cholesky_inplace(Matrix& A) {
1519 
1520  using Type = matrix_element_t<Matrix>;
1521 
1522  if (!is_square(A)) {
1523  TH_MATH_ERROR("algebra::decompose_cholesky_inplace", A.rows(), INVALID_ARGUMENT);
1524  return mat_error(A);
1525  }
1526 
1527  if (!is_symmetric(A)) {
1528  TH_MATH_ERROR("algebra::decompose_cholesky_inplace", false, INVALID_ARGUMENT);
1529  return mat_error(A);
1530  }
1531 
1532  // Compute the Cholesky decomposition in-place
1533  for (unsigned int k = 0; k < A.rows(); ++k) {
1534 
1535  A(k, k) = sqrt(A(k, k));
1536 
1537  for (unsigned int i = k + 1; i < A.rows(); ++i)
1538  A(i, k) = A(i, k) / A(k, k);
1539 
1540  for (unsigned int j = k + 1; j < A.rows(); ++j)
1541  for (unsigned int i = j; i < A.cols(); ++i)
1542  A(i, j) -= pair_inner_product(A(i, k), A(j, k));
1543  }
1544 
1545  // Zero out elements over the diagonal
1546  for (unsigned int i = 0; i < A.rows(); ++i)
1547  for (unsigned int j = i + 1; j < A.rows(); ++j)
1548  A(i, j) = Type(0.0);
1549 
1550 
1551  return A;
1552  }
1553 
1554 
1555  // Linear system solvers
1556 
1557 
1563  template<typename Matrix, typename Vector>
1564  inline Vector solve_triangular_lower(const Matrix& L, const Vector& b) {
1565 
1566  Vector x;
1567  x.resize(L.cols());
1568  using Type = matrix_element_t<Matrix>;
1569 
1570  if (!is_square(L)) {
1571  TH_MATH_ERROR("algebra::solve_triangular_lower", false, INVALID_ARGUMENT);
1572  return vec_error(x);
1573  }
1574 
1575  if (b.size() != L.rows()) {
1576  TH_MATH_ERROR("algebra::solve_triangular_lower", b.size(), INVALID_ARGUMENT);
1577  return vec_error(x);
1578  }
1579 
1580  // Solve using forward substitution
1581  for (unsigned int i = 0; i < L.cols(); ++i) {
1582 
1583  Type sum = L(i, 0) * x[0];
1584 
1585  for (unsigned int j = 1; j < i; ++j)
1586  sum += L(i, j) * x[j];
1587 
1588  if (abs(L(i, i)) < MACH_EPSILON) {
1589  TH_MATH_ERROR("algebra::solve_triangular_lower", L(i, i), DIV_BY_ZERO);
1590  return vec_error(x);
1591  }
1592 
1593  x[i] = (b[i] - sum) / L(i, i);
1594  }
1595 
1596  return x;
1597  }
1598 
1599 
1605  template<typename Matrix, typename Vector>
1606  inline Vector solve_triangular_upper(const Matrix& U, const Vector& b) {
1607 
1608  Vector x;
1609  x.resize(U.cols());
1610  using Type = matrix_element_t<Matrix>;
1611 
1612  if (!is_square(U)) {
1613  TH_MATH_ERROR("solve_triangular_upper", false, INVALID_ARGUMENT);
1614  return vec_error(x);
1615  }
1616 
1617  if (b.size() != U.rows()) {
1618  TH_MATH_ERROR("solve_triangular_upper", b.size(), INVALID_ARGUMENT);
1619  return vec_error(x);
1620  }
1621 
1622  if (U.rows() == 1) {
1623  x[0] = b[0] / U(0, 0);
1624  return x;
1625  }
1626 
1627  // Solve using backward substitution
1628  for (int i = U.rows() - 1; i >= 0; --i) {
1629 
1630  Type sum = U(i, i + 1) * x[i + 1];
1631 
1632  for (unsigned int j = i + 2; j < U.cols(); ++j)
1633  sum += U(i, j) * x[j];
1634 
1635  if (abs(U(i, i)) < MACH_EPSILON) {
1636  TH_MATH_ERROR("solve_triangular_upper", U(i, i), DIV_BY_ZERO);
1637  return vec_error(x);
1638  }
1639 
1640  x[i] = (b[i] - sum) / U(i, i);
1641  }
1642 
1643  return x;
1644  }
1645 
1646 
1654  template<typename Matrix, typename Vector>
1655  inline Vector solve_triangular(const Matrix& T, const Vector& b) {
1656 
1657  // Pick the correct solver
1658  if (is_lower_triangular(T))
1659  return solve_triangular_lower(T, b);
1660  else if(is_upper_triangular(T))
1661  return solve_triangular_upper(T, b);
1662  else {
1663  Vector err;
1664  err.resize(b.size());
1665  return vec_error(err);
1666  }
1667  }
1668 
1669 
1680  template<typename Matrix, typename Vector>
1681  inline Vector& solve_lu_inplace(const Matrix& A, Vector& b) {
1682 
1683  if (!is_square(A)) {
1684  TH_MATH_ERROR("algebra::solve_lu_inplace", A.rows(), INVALID_ARGUMENT);
1685  return vec_error(b);
1686  }
1687 
1688  if (A.rows() != b.size()) {
1689  TH_MATH_ERROR("algebra::solve_lu_inplace", A.rows(), INVALID_ARGUMENT);
1690  return vec_error(b);
1691  }
1692 
1693  using Type = matrix_element_t<Matrix>;
1694 
1695  // Forward elimination: solves the lower system (L matrix).
1696  for (unsigned int i = 1; i < A.rows(); ++i) {
1697 
1698  Type sum = Type(0.0);
1699 
1700  for (unsigned int j = 0; j < i; ++j)
1701  sum += A(i, j) * b[j];
1702 
1703  b[i] -= sum;
1704  }
1705 
1706  // Backward elimination: solves the upper system (U matrix).
1707  for (int i = A.rows() - 1; i >= 0; --i) {
1708 
1709  Type sum = Type(0.0);
1710 
1711  for (unsigned int j = i + 1; j < A.rows(); ++j)
1712  sum += A(i, j) * b[j];
1713 
1714  b[i] = (b[i] - sum) / A(i, i);
1715  }
1716 
1717  return b;
1718  }
1719 
1720 
1728  template<typename Matrix, typename Vector>
1729  inline Vector solve_lu(Matrix A, Vector b) {
1730 
1731  // Apply in-place LU decomposition
1733 
1734  // Apply forward and backward substitution
1735  return solve_lu_inplace(A, b);
1736  }
1737 
1738 
1749  template<typename Matrix1, typename Matrix2, typename Vector>
1750  inline Vector solve_lu(const Matrix1& L, const Matrix2& U, const Vector& b) {
1751 
1752  Vector x = b;
1753 
1754  if (!is_square(L)) {
1755  TH_MATH_ERROR("algebra::solve_lu", L.rows(), INVALID_ARGUMENT);
1756  return vec_error(x);
1757  }
1758 
1759  if (!is_square(U)) {
1760  TH_MATH_ERROR("algebra::solve_lu", U.rows(), INVALID_ARGUMENT);
1761  return vec_error(x);
1762  }
1763 
1764  if (L.rows() != U.rows()) {
1765  TH_MATH_ERROR("algebra::solve_lu", U.rows(), INVALID_ARGUMENT);
1766  return vec_error(x);
1767  }
1768 
1769  if (b.size() != L.rows()) {
1770  TH_MATH_ERROR("algebra::solve_lu", b.size(), INVALID_ARGUMENT);
1771  return vec_error(x);
1772  }
1773 
1774  using Type1 = matrix_element_t<Matrix1>;
1775 
1776  // Forward elimination for L
1777  for (unsigned int i = 1; i < L.rows(); ++i) {
1778 
1779  Type1 sum = Type1(0.0);
1780 
1781  for (unsigned int j = 0; j < i; ++j)
1782  sum += L(i, j) * x[j];
1783 
1784  x[i] -= sum;
1785  }
1786 
1787  using Type2 = matrix_element_t<Matrix2>;
1788 
1789  // Backward elimination for U
1790  for (int i = U.rows() - 1; i >= 0; --i) {
1791 
1792  Type2 sum = Type2(0.0);
1793 
1794  for (unsigned int j = i + 1; j < U.rows(); ++j)
1795  sum += U(i, j) * x[j];
1796 
1797  if (abs(U(i, i)) < MACH_EPSILON) {
1798  TH_MATH_ERROR("algebra::solve_lu", U(i, i), DIV_BY_ZERO);
1799  return vec_error(x);
1800  }
1801 
1802  x[i] = (x[i] - sum) / U(i, i);
1803  }
1804 
1805  return x;
1806  }
1807 
1808 
1817  template<typename Matrix, typename Vector>
1818  inline Vector solve_cholesky(const Matrix& L, const Vector& b) {
1819 
1820  Vector x = b;
1821 
1822  if (!is_square(L)) {
1823  TH_MATH_ERROR("algebra::solve_cholesky", L.rows(), INVALID_ARGUMENT);
1824  return vec_error(x);
1825  }
1826 
1827  if (L.rows() != b.size()) {
1828  TH_MATH_ERROR("algebra::solve_cholesky", b.size(), INVALID_ARGUMENT);
1829  return vec_error(x);
1830  }
1831 
1832  using Type = matrix_element_t<Matrix>;
1833 
1834  // Forward elimination for L
1835  for (unsigned int i = 0; i < L.rows(); ++i) {
1836 
1837  Type sum = Type(0.0);
1838 
1839  for (unsigned int j = 0; j < i; ++j)
1840  sum += L(i, j) * x[j];
1841 
1842  x[i] = (x[i] - sum) / L(i, i);
1843  }
1844 
1845  // Backward elimination for L transpose
1846  for (int i = L.rows() - 1; i >= 0; --i) {
1847 
1848  Type sum = Type(0.0);
1849 
1850  for (unsigned int j = i + 1; j < L.rows(); ++j)
1851  sum += L(j, i) * x[j];
1852 
1853  x[i] = (x[i] - sum) / L(i, i);
1854  }
1855 
1856  return x;
1857  }
1858 
1859 
1866  template<typename Matrix, typename Vector>
1867  inline Vector solve(const Matrix& A, const Vector& b) {
1868 
1869  // Use LU decomposition to solve the linear system
1870  return solve_lu(A, b);
1871  }
1872 
1873 
1874  // Other composite operations
1875 
1876 
1882  template<typename Matrix1, typename Matrix2>
1883  inline Matrix1& inverse(Matrix1& dest, const Matrix2& src) {
1884 
1885  if(src.rows() != src.cols()) {
1886  TH_MATH_ERROR("algebra::inverse", src.rows(), INVALID_ARGUMENT);
1887  mat_error(dest);
1888  return dest;
1889  }
1890 
1891  if(dest.rows() != src.rows()) {
1892  TH_MATH_ERROR("algebra::inverse", dest.rows(), INVALID_ARGUMENT);
1893  mat_error(dest);
1894  return dest;
1895  }
1896 
1897  if(dest.cols() != src.cols()) {
1898  TH_MATH_ERROR("algebra::inverse", dest.cols(), INVALID_ARGUMENT);
1899  mat_error(dest);
1900  return dest;
1901  }
1902 
1903  using Type = matrix_element_t<Matrix2>;
1904 
1905  // Prepare extended matrix (A|B)
1906  Matrix1 A;
1907  A.resize(src.rows(), src.cols());
1908  dest.resize(src.rows(), src.cols());
1909  mat_copy(A, src);
1910  make_identity(dest);
1911 
1912  // Iterate on all columns
1913  for (unsigned int i = 0; i < src.rows(); ++i) {
1914 
1915  // Make sure the element on the diagonal
1916  // is non-zero by adding the first non-zero row
1917  if(A(i, i) == (Type) 0) {
1918 
1919  bool flag = false;
1920 
1921  // Iterate on all rows
1922  for (unsigned int j = i + 1; j < src.rows(); ++j) {
1923 
1924  // Add the j-th row to the i-th row
1925  // if Aji is non-zero
1926  if(A(j, i) != (Type) 0) {
1927 
1928  for (unsigned int k = 0; k < src.rows(); ++k) {
1929  A(i, k) += A(j, k);
1930  dest(i, k) += dest(j, k);
1931  }
1932 
1933  flag = true;
1934  break;
1935  }
1936  }
1937 
1938  if(!flag) {
1939  TH_MATH_ERROR("algebra::inverse", flag, IMPOSSIBLE_OPERATION);
1940  mat_error(dest);
1941  return dest;
1942  }
1943  }
1944 
1945  auto inv_pivot = ((Type) 1.0) / A(i, i);
1946 
1947  // Use the current row to make all other
1948  // elements of the column equal to zero
1949  for (unsigned int j = 0; j < src.rows(); ++j) {
1950 
1951  // Skip the current row
1952  if(j == i)
1953  continue;
1954 
1955  // Multiplication coefficient for
1956  // the elision of Ajk
1957  const auto coeff = A(j, i) * inv_pivot;
1958 
1959  for (unsigned int k = 0; k < src.rows(); ++k) {
1960  A(j, k) -= coeff * A(i, k);
1961  dest(j, k) -= coeff * dest(i, k);
1962  }
1963  }
1964 
1965  // Divide the current row by the pivot
1966  for (unsigned int j = 0; j < src.rows(); ++j) {
1967  A(i, j) *= inv_pivot;
1968  dest(i, j) *= inv_pivot;
1969  }
1970 
1971  }
1972 
1973  return dest;
1974  }
1975 
1976 
1982  template<typename Matrix, typename MatrixInv = Matrix>
1983  inline MatrixInv inverse(const Matrix& m) {
1984  MatrixInv res;
1985  res.resize(m.rows(), m.cols());
1986  inverse(res, m);
1987  return res;
1988  }
1989 
1990 
1996  template<typename Matrix>
1997  inline Matrix& invert(Matrix& m) {
1998 
1999  if(m.rows() != m.cols()) {
2000  TH_MATH_ERROR("algebra::invert", m.rows(), INVALID_ARGUMENT);
2001  mat_error(m);
2002  return m;
2003  }
2004 
2005  // Prepare extended matrix (A|B)
2006  Matrix tmp;
2007  tmp.resize(m.rows(), m.cols());
2008  inverse(tmp, m);
2009 
2010  // Modify the matrix only when the inversion
2011  // has succeeded
2012  mat_copy(m, tmp);
2013  return m;
2014  }
2015 
2016 
2023  template<typename Matrix>
2024  inline auto det(const Matrix& A) {
2025 
2026  Matrix LU = A;
2028 
2029  // The determinant of a triangular matrix
2030  // is the product of the elements on its diagonal
2031  return diagonal_product(LU);
2032  }
2033 
2034 
2035  // Eigensolvers
2036 
2037 
2045  template<typename Matrix, typename Vector>
2046  inline auto rayleigh_quotient(const Matrix& A, const Vector& x) {
2047 
2048  const auto p = dot(x, x);
2049 
2050  // Check for division by zero
2051  if (abs(p) < MACH_EPSILON) {
2052  TH_MATH_ERROR("rayleigh_quotient", abs(p), DIV_BY_ZERO);
2053  return vector_element_t<Vector>(nan());
2054  }
2055 
2056  return dot(x, transform(A, x)) / p;
2057  }
2058 
2059 
2071  template<typename Matrix, typename Vector>
2072  inline auto eigenvalue_power(
2073  const Matrix& A, const Vector& x,
2074  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2075 
2076  using Type = matrix_element_t<Matrix>;
2077 
2078  if (!is_square(A)) {
2079  TH_MATH_ERROR("eigenvalue_power", is_square(A), INVALID_ARGUMENT);
2080  return Type(nan());
2081  }
2082 
2083  if (x.size() != A.rows()) {
2084  TH_MATH_ERROR("eigenvalue_power", x.size(), INVALID_ARGUMENT);
2085  return Type(nan());
2086  }
2087 
2088  // Apply a first iteration to initialize
2089  // the current and previous vectors
2090  Vector x_prev = x;
2091  Vector x_curr = normalize(A * x_prev);
2092 
2093  // Iteration counter
2094  unsigned int i;
2095 
2096  // Iteratively apply the matrix to the vector
2097  for (i = 1; i <= max_iter; ++i) {
2098 
2099  x_prev = x_curr;
2100  x_curr = normalize(transform(A, x_prev));
2101 
2102  // Stop the algorithm when |x_k+1 +- x_k| is
2103  // less then the tolerance in module
2104  if (norm(x_curr - x_prev) <= tolerance ||
2105  norm(x_curr + x_prev) <= tolerance)
2106  break;
2107  }
2108 
2109  // The algorithm did not converge
2110  if (i > max_iter) {
2111  TH_MATH_ERROR("eigenvalue_power", i, NO_ALGO_CONVERGENCE);
2112  return Type(nan());
2113  }
2114 
2115  return dot(x_curr, A * x_curr);
2116  }
2117 
2118 
2132  template<typename Matrix, typename Vector1, typename Vector2 = Vector1>
2133  inline auto eigenpair_power(
2134  const Matrix& A, const Vector1& x, Vector2& v,
2135  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2136 
2137  using Type = matrix_element_t<Matrix>;
2138 
2139  if (!is_square(A)) {
2140  TH_MATH_ERROR("eigenpair_power", is_square(A), INVALID_ARGUMENT);
2141  return Type(nan());
2142  }
2143 
2144  if (x.size() != A.rows()) {
2145  TH_MATH_ERROR("eigenpair_power", x.size(), INVALID_ARGUMENT);
2146  return Type(nan());
2147  }
2148 
2149  if (v.size() != x.size()) {
2150  TH_MATH_ERROR("eigenpair_power", v.size(), INVALID_ARGUMENT);
2151  return Type(nan());
2152  }
2153 
2154  // Apply a first iteration to initialize
2155  // the current and previous vectors
2156  Vector1 x_prev = x;
2157  Vector1 x_curr = normalize(A * x_prev);
2158 
2159  // Iteration counter
2160  unsigned int i;
2161 
2162  // Iteratively apply the matrix to the vector
2163  for (i = 1; i <= max_iter; ++i) {
2164 
2165  x_prev = x_curr;
2166  x_curr = normalize(transform(A, x_prev));
2167 
2168  // Stop the algorithm when |x_k+1 +- x_k| is
2169  // less then the tolerance in module
2170  if (norm(x_curr - x_prev) <= tolerance ||
2171  norm(x_curr + x_prev) <= tolerance)
2172  break;
2173  }
2174 
2175  // The algorithm did not converge
2176  if (i > max_iter) {
2177  TH_MATH_ERROR("eigenpair_power", i, NO_ALGO_CONVERGENCE);
2178  return Type(nan());
2179  }
2180 
2181  // Overwrite with the eigenvector
2182  vec_copy(v, x_curr);
2183 
2184  return dot(x_curr, A * x_curr);
2185  }
2186 
2187 
2199  template<typename Matrix, typename Vector>
2200  inline auto eigenvalue_inverse(
2201  const Matrix& A, const Vector& x,
2202  real tolerance = ALGEBRA_EIGEN_TOL,
2203  unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2204 
2205  using Type = matrix_element_t<Matrix>;
2206 
2207  if (!is_square(A)) {
2208  TH_MATH_ERROR("eigenvalue_inverse", is_square(A), INVALID_ARGUMENT);
2209  return Type(nan());
2210  }
2211 
2212  if (A.rows() != x.size()) {
2213  TH_MATH_ERROR("eigenvalue_inverse", x.size(), INVALID_ARGUMENT);
2214  return Type(nan());
2215  }
2216 
2217  // Compute the LU decomposition of A to speed up system solution
2218  Matrix LU = A;
2220 
2221  // Compute the first step to initialize the two vectors
2222  Vector x_prev = normalize(x);
2223  Vector x_curr = x_prev;
2224  solve_lu_inplace(LU, x_curr);
2225 
2226  // Iteration counter
2227  unsigned int i;
2228 
2229  for (i = 1; i <= max_iter; ++i) {
2230 
2231  // Solve the linear system using the LU decomposition
2232  x_prev = x_curr;
2233  make_normalized(solve_lu_inplace(LU, x_curr));
2234 
2235  // Stop the algorithm when |x_k+1 +- x_k| is
2236  // less then the tolerance in module
2237  if (norm(x_curr - x_prev) <= tolerance ||
2238  norm(x_curr + x_prev) <= tolerance)
2239  break;
2240  }
2241 
2242  // The algorithm did not converge
2243  if (i > max_iter) {
2244  TH_MATH_ERROR("eigenvalue_inverse", i, NO_ALGO_CONVERGENCE);
2245  return Type(nan());
2246  }
2247 
2248  // A and inverse(A) have the same eigenvectors
2249  return dot(x_curr, A * x_curr);
2250  }
2251 
2252 
2266  template<typename Matrix, typename Vector1, typename Vector2>
2267  inline auto eigenpair_inverse(
2268  const Matrix& A, const Vector1& x, Vector2& v,
2269  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2270 
2271  using Type = matrix_element_t<Matrix>;
2272 
2273  if (!is_square(A)) {
2274  TH_MATH_ERROR("eigenpair_inverse", is_square(A), INVALID_ARGUMENT);
2275  return Type(nan());
2276  }
2277 
2278  if (A.rows() != x.size()) {
2279  TH_MATH_ERROR("eigenpair_inverse", x.size(), INVALID_ARGUMENT);
2280  return Type(nan());
2281  }
2282 
2283  // Compute the LU decomposition of A to speed up system solution
2284  Matrix LU = A;
2286 
2287  // Compute the first step to initialize the two vectors
2288  Vector1 x_prev = normalize(x);
2289  Vector1 x_curr = x_prev;
2290  solve_lu_inplace(LU, x_curr);
2291 
2292  // Iteration counter
2293  unsigned int i;
2294 
2295  for (i = 1; i <= max_iter; ++i) {
2296 
2297  // Solve the linear system using the LU decomposition
2298  x_prev = x_curr;
2299  make_normalized(solve_lu_inplace(LU, x_curr));
2300 
2301  // Stop the algorithm when |x_k+1 +- x_k| is
2302  // less then the tolerance in module
2303  if (norm(x_curr - x_prev) <= tolerance ||
2304  norm(x_curr + x_prev) <= tolerance)
2305  break;
2306  }
2307 
2308  // The algorithm did not converge
2309  if (i > max_iter) {
2310  TH_MATH_ERROR("eigenpair_inverse", i, NO_ALGO_CONVERGENCE);
2311  return Type(nan());
2312  }
2313 
2314  // Overwrite with the eigenvector
2315  vec_copy(v, x_curr);
2316 
2317  // A and inverse(A) have the same eigenvectors
2318  return dot(x_curr, A * x_curr);
2319  }
2320 
2321 
2338  template<typename Matrix, typename Vector, typename T = matrix_element_t<Matrix>>
2339  inline Vector eigenvector_inverse(
2340  const Matrix& A, const T& lambda, const Vector& x,
2341  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2342 
2343  if (!is_square(A)) {
2344  TH_MATH_ERROR("eigenvector_inverse", is_square(A), INVALID_ARGUMENT);
2345  Vector x;
2346  return vec_error(x);
2347  }
2348 
2349  if (A.rows() != x.size()) {
2350  TH_MATH_ERROR("eigenvector_inverse", x.size(), INVALID_ARGUMENT);
2351  Vector x;
2352  return vec_error(x);
2353  }
2354 
2355  Matrix LU = A;
2356  mat_shift_diagonal(LU, -lambda);
2357 
2358  // Compute the LU decomposition of A
2359  // to speed up system solution
2361 
2362  // Compute the first step to initialize the two vectors
2363  Vector v_prev = normalize(x);
2364  Vector v_curr = v_prev;
2365  solve_lu_inplace(LU, v_curr);
2366 
2367  // Iteration counter
2368  unsigned int i;
2369 
2370  for (i = 1; i <= max_iter; ++i) {
2371 
2372  // Solve the linear system using the LU decomposition
2373  v_prev = v_curr;
2374  make_normalized(solve_lu_inplace(LU, v_curr));
2375 
2376  // Stop the algorithm when |x_k+1 +- x_k| is
2377  // less then the tolerance in module
2378  if (norm(v_curr - v_prev) <= tolerance ||
2379  norm(v_curr + v_prev) <= tolerance)
2380  break;
2381  }
2382 
2383  // The algorithm did not converge
2384  if (i > max_iter) {
2385  TH_MATH_ERROR("eigenvector_inverse", i, NO_ALGO_CONVERGENCE);
2386  return vec_error(v_curr);
2387  }
2388 
2389  return v_curr;
2390  }
2391 
2392 
2406  template<typename Matrix, typename Vector, typename T = matrix_element_t<Matrix>>
2407  inline auto eigenvalue_rayleigh(
2408  const Matrix& A, const T& lambda, const Vector& x,
2409  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2410 
2411  using Type = matrix_element_t<Matrix>;
2412 
2413  if (!is_square(A)) {
2414  TH_MATH_ERROR("eigenvalue_rayleigh", is_square(A), INVALID_ARGUMENT);
2415  return Type(nan());
2416  }
2417 
2418  if (A.rows() != x.size()) {
2419  TH_MATH_ERROR("eigenvalue_rayleigh", x.size(), INVALID_ARGUMENT);
2420  return Type(nan());
2421  }
2422 
2423  // Keep track of the shifted matrix
2424  Matrix A_shift = A;
2425  mat_shift_diagonal(A_shift, -lambda);
2426 
2427  Type lambda_prev = lambda;
2428  Type lambda_curr = lambda;
2429 
2430  Vector x_prev = normalize(x);
2431  Vector x_curr = normalize(solve(A_shift, x));
2432 
2433  unsigned int i;
2434 
2435  for (i = 1; i <= max_iter; ++i) {
2436 
2437  // Update the eigenvalue approximation
2438  // using Rayleigh quotient (avoiding normalization)
2439  lambda_prev = lambda_curr;
2440  lambda_curr = dot(x_curr, transform(A, x_curr));
2441 
2442  // Shift the diagonal by the difference between
2443  // subsequent eigenvalues steps, to avoid copying matrix A
2444  mat_shift_diagonal(A_shift, lambda_prev - lambda_curr);
2445 
2446  // Solve the linear system each time, as the shifted
2447  // matrix is continuously updated
2448  x_prev = x_curr;
2449  x_curr = normalize(solve(A_shift, x_curr));
2450 
2451  // Stop the algorithm when |x_k+1 +- x_k| is
2452  // less then the tolerance in module
2453  if (norm(x_curr - x_prev) <= tolerance ||
2454  norm(x_curr + x_prev) <= tolerance)
2455  break;
2456  }
2457 
2458  if (i > max_iter) {
2459  TH_MATH_ERROR("eigenvalue_rayleigh", i, NO_ALGO_CONVERGENCE);
2460  return Type(nan());
2461  }
2462 
2463  return dot(x_curr, transform(A, x_curr));
2464  }
2465 
2466 
2482  template<typename Matrix, typename Vector1, typename Vector2,
2483  typename T = matrix_element_t<Matrix>>
2484  inline auto eigenpair_rayleigh(
2485  const Matrix& A, const T& lambda, const Vector1& x, Vector2& v,
2486  real tolerance = ALGEBRA_EIGEN_TOL, unsigned int max_iter = ALGEBRA_EIGEN_ITER) {
2487 
2488  using Type = matrix_element_t<Matrix>;
2489 
2490  if (!is_square(A)) {
2491  TH_MATH_ERROR("eigenpair_rayleigh", is_square(A), INVALID_ARGUMENT);
2492  return Type(nan());
2493  }
2494 
2495  if (A.rows() != x.size()) {
2496  TH_MATH_ERROR("eigenpair_rayleigh", x.size(), INVALID_ARGUMENT);
2497  return Type(nan());
2498  }
2499 
2500  // Keep track of the shifted matrix
2501  Matrix A_shift = A;
2502  mat_shift_diagonal(A_shift, -lambda);
2503 
2504  Type lambda_prev = lambda;
2505  Type lambda_curr = lambda;
2506 
2507  Vector1 x_prev = normalize(x);
2508  Vector1 x_curr = normalize(solve(A_shift, x));
2509 
2510  unsigned int i;
2511 
2512  for (i = 1; i <= max_iter; ++i) {
2513 
2514  // Update the eigenvalue approximation
2515  // using Rayleigh quotient (avoiding normalization)
2516  lambda_prev = lambda_curr;
2517  lambda_curr = dot(x_curr, transform(A, x_curr));
2518 
2519  // Shift the diagonal by the difference between
2520  // subsequent eigenvalues steps, to avoid copying matrix A
2521  mat_shift_diagonal(A_shift, lambda_prev - lambda_curr);
2522 
2523  // Solve the linear system each time, as the shifted
2524  // matrix is continuously updated
2525  x_prev = x_curr;
2526  x_curr = normalize(solve(A_shift, x_curr));
2527 
2528  // Stop the algorithm when |x_k+1 +- x_k| is
2529  // less then the tolerance in module
2530  if (norm(x_curr - x_prev) <= tolerance ||
2531  norm(x_curr + x_prev) <= tolerance)
2532  break;
2533  }
2534 
2535  if (i > max_iter) {
2536  TH_MATH_ERROR("eigenpair_rayleigh", i, NO_ALGO_CONVERGENCE);
2537  return Type(nan());
2538  }
2539 
2540  // Overwrite with the eigenvector
2541  vec_copy(v, x_curr);
2542 
2543  return dot(x_curr, transform(A, x_curr));
2544  }
2545  }
2546 }
2547 
2548 #endif
Complex number in algebraic form .
Definition: complex.h:26
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
Matrix2 & mat_lincomb(Field1 alpha, Matrix1 &A, Field2 beta, const Matrix2 &B)
Compute the linear combination of two matrices and store the result in the first matrix.
Definition: algebra.h:901
bool is_lower_triangular(const Matrix &m, real tolerance=ALGEBRA_ELEMENT_TOL)
Returns whether the matrix is lower triangular.
Definition: algebra.h:1279
Matrix & mat_zeroes(Matrix &m)
Overwrite a matrix with all zeroes.
Definition: algebra.h:93
Vector1 cross(const Vector1 &v1, const Vector2 &v2)
Compute the cross product between two tridimensional vectors.
Definition: algebra.h:373
Matrix & make_identity(Matrix &m)
Overwrite a matrix with the identity matrix.
Definition: algebra.h:77
Matrix3 mat_transpose_mul(const Matrix1 &A, const Matrix2 &B)
Multiply the transpose of a matrix by another matrix, equivalent to the operation .
Definition: algebra.h:1049
auto eigenpair_power(const Matrix &A, const Vector1 &x, Vector2 &v, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Find the biggest eigenvalue in module of a square matrix and its corresponding eigenvector (eigenpai...
Definition: algebra.h:2133
Matrix & make_transposed(Matrix &m)
Transpose the given matrix.
Definition: algebra.h:420
Matrix & make_hermitian(Matrix &m)
Compute the hermitian of a given matrix and overwrite it.
Definition: algebra.h:497
Vector & make_normalized(Vector &v)
Normalize a given vector overwriting it.
Definition: algebra.h:327
Matrix & decompose_lu_inplace(Matrix &A)
Decompose a square matrix to two triangular matrices, L and U where L is lower and U is upper,...
Definition: algebra.h:1432
bool is_square(const Matrix &m)
Returns whether the matrix is square.
Definition: algebra.h:1232
Matrix & mat_shift_diagonal(Matrix &A, const Type &sigma)
Shift the diagonal of a matrix by the given amount, overwriting the matrix itself,...
Definition: algebra.h:233
auto eigenvalue_power(const Matrix &A, const Vector &x, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Find the biggest eigenvalue in module of a square matrix using the power method (Von Mises iteration...
Definition: algebra.h:2072
auto trace(const Matrix &m)
Compute the trace of the given matrix.
Definition: algebra.h:555
auto eigenpair_inverse(const Matrix &A, const Vector1 &x, Vector2 &v, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Find the eigenvalue with the smallest inverse of a square matrix and its corresponding eigenvector,...
Definition: algebra.h:2267
Vector2 & vec_sum(Vector1 &v1, const Vector2 &v2)
Sum two vectors and store the result in the first vector.
Definition: algebra.h:1135
bool is_symmetric(const Matrix &m, real tolerance=ALGEBRA_ELEMENT_TOL)
Returns whether the matrix is symmetric.
Definition: algebra.h:1259
Vector solve(const Matrix &A, const Vector &b)
Solve the linear system , finding using the best available algorithm.
Definition: algebra.h:1867
bool mat_equals(const Matrix1 &A, const Matrix2 &B, real tolerance=10 *MACH_EPSILON)
Checks whether two matrices are equal.
Definition: algebra.h:1109
Vector & vec_error(Vector &v)
Overwrite the given vector with the error vector with NaN values.
Definition: algebra.h:62
Matrix & mat_scalmul(Field a, Matrix &m)
Multiply a matrix by a scalar of any compatible type.
Definition: algebra.h:590
Vector transform(const Matrix &A, const Vector &v)
Returns the matrix transformation of a vector.
Definition: algebra.h:702
bool is_upper_triangular(const Matrix &m, real tolerance=ALGEBRA_ELEMENT_TOL)
Returns whether the matrix is upper triangular.
Definition: algebra.h:1299
bool is_diagonal(const Matrix &m, real tolerance=10 *MACH_EPSILON)
Returns whether the matrix is diagonal.
Definition: algebra.h:1243
real density(const Matrix &A, real tolerance=1E-12)
Compute the density of a matrix, counting the proportion of non-zero (bigger in module than the given...
Definition: algebra.h:1323
Vector eigenvector_inverse(const Matrix &A, const T &lambda, const Vector &x, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Find the eigenvector associated with a given approximated eigenvalue using the inverse power method.
Definition: algebra.h:2339
void decompose_lu(const Matrix1 &A, Matrix2 &L, Matrix3 &U)
Decompose a square matrix to two triangular matrices, L and U where L is lower and U is upper,...
Definition: algebra.h:1363
Matrix2 & mat_sum(Matrix1 &A, const Matrix2 &B)
Sum two matrices and store the result in the first matrix.
Definition: algebra.h:764
Vector solve_lu(Matrix A, Vector b)
Solve the linear system , finding .
Definition: algebra.h:1729
real sparsity(const Matrix &A, real tolerance=1E-12)
Compute the sparsity of a matrix, counting the proportion of zero (smaller in module than the given t...
Definition: algebra.h:1346
Vector solve_triangular(const Matrix &T, const Vector &b)
Solve the linear system for triangular .
Definition: algebra.h:1655
Matrix decompose_cholesky(const Matrix &A)
Decompose a symmetric positive definite matrix into a triangular matrix so that using Cholesky decom...
Definition: algebra.h:1462
auto dot(const Vector1 &v, const Vector2 &w)
Computes the dot product between two vectors, using the Hermitian form if needed.
Definition: algebra.h:351
Matrix3 mat_mul(const Matrix1 &A, const Matrix2 &B)
Multiply two matrices and store the result in the first matrix, equivalent to the operation .
Definition: algebra.h:977
Matrix1 & mat_copy(Matrix1 &dest, const Matrix2 &src)
Copy a matrix by overwriting another.
Definition: algebra.h:125
auto pair_inner_product(const Type &v_i, const Type &w_i)
Compute the contribution of the inner product between a pair of elements of two vectors,...
Definition: algebra.h:252
auto diagonal_product(const Matrix &m)
Compute the product of the elements of the main diagonal of a generic matrix.
Definition: algebra.h:573
auto eigenvalue_rayleigh(const Matrix &A, const T &lambda, const Vector &x, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Compute an eigenvalue of a square matrix using the Rayleigh quotient iteration method.
Definition: algebra.h:2407
Matrix & mat_error(Matrix &m)
Overwrite the given matrix with the error matrix with NaN values on the diagonal and zeroes everywher...
Definition: algebra.h:44
auto eigenpair_rayleigh(const Matrix &A, const T &lambda, const Vector1 &x, Vector2 &v, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Compute an eigenvalue of a square matrix and its corresponding eigenvector (eigenpair) using the Rayl...
Definition: algebra.h:2484
auto rayleigh_quotient(const Matrix &A, const Vector &x)
Compute the Rayleigh quotient of a vector with respect to a matrix.
Definition: algebra.h:2046
auto sqr_norm(const Vector &v)
Returns the square of the Euclidean/Hermitian norm of the given vector.
Definition: algebra.h:275
auto det(const Matrix &A)
Compute the determinant of a square matrix.
Definition: algebra.h:2024
Matrix & invert(Matrix &m)
Invert the given matrix and overwrite it.
Definition: algebra.h:1997
Vector solve_triangular_lower(const Matrix &L, const Vector &b)
Solve the linear system for lower triangular .
Definition: algebra.h:1564
Matrix1 & inverse(Matrix1 &dest, const Matrix2 &src)
Invert the given matrix.
Definition: algebra.h:1883
Matrix3 mat_mul_transpose(const Matrix1 &A, const Matrix2 &B)
Multiply a matrix by the transpose of another matrix, equivalent to the operation .
Definition: algebra.h:1081
Matrix2 & mat_diff(Matrix1 &A, const Matrix2 &B)
Subtract two matrices and store the result in the first matrix.
Definition: algebra.h:832
MatrixT hermitian(const Matrix &m)
Returns the hermitian of the given matrix.
Definition: algebra.h:478
Vector & vec_scalmul(Field a, Vector &v)
Multiply a vector by a scalar of any compatible type.
Definition: algebra.h:634
Vector solve_triangular_upper(const Matrix &U, const Vector &b)
Solve the linear system for upper triangular .
Definition: algebra.h:1606
Vector & apply_transform(const Matrix &A, Vector &v)
Apply a matrix transformation to a vector and store the result in the vector.
Definition: algebra.h:675
Vector & solve_lu_inplace(const Matrix &A, Vector &b)
Solve the linear system , finding , where the matrix A has already undergone in-place LU decompositio...
Definition: algebra.h:1681
Vector1 & vec_copy(Vector1 &dest, const Vector2 &src)
Copy a vector by overwriting another.
Definition: algebra.h:143
Vector2 & vec_diff(Vector1 &v1, const Vector2 &v2)
Subtract two vectors and store the result in the first vector.
Definition: algebra.h:1183
Vector & vec_zeroes(Vector &v)
Overwrite a vector with all zeroes.
Definition: algebra.h:109
Matrix & decompose_cholesky_inplace(Matrix &A)
Decompose a symmetric positive definite matrix in-place, overwriting the starting matrix,...
Definition: algebra.h:1518
Vector solve_cholesky(const Matrix &L, const Vector &b)
Solve a linear system defined by a symmetric positive definite matrix, using the Cholesky decomposit...
Definition: algebra.h:1818
Matrix & mat_swap_cols(Matrix &A, unsigned int col1, unsigned int col2)
Swap two columns of a matrix, given the matrix and the two indices of the columns.
Definition: algebra.h:197
auto norm(const Vector &v)
Returns the Euclidean/Hermitian norm of the given vector.
Definition: algebra.h:292
Matrix & mat_swap_rows(Matrix &A, unsigned int row1, unsigned int row2)
Swap two rows of a matrix, given the matrix and the two indices of the rows.
Definition: algebra.h:161
Vector normalize(const Vector &v)
Returns the normalized vector.
Definition: algebra.h:302
auto eigenvalue_inverse(const Matrix &A, const Vector &x, real tolerance=ALGEBRA_EIGEN_TOL, unsigned int max_iter=ALGEBRA_EIGEN_ITER)
Find the eigenvalue with the smallest inverse of a square matrix, using the inverse power method wit...
Definition: algebra.h:2200
MatrixT transpose(const Matrix &m)
Returns the transpose of the given matrix.
Definition: algebra.h:403
real beta(real x1, real x2)
Beta special function of real argument.
Definition: special.h:141
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:198
auto min(const Vector &X)
Finds the minimum value inside a dataset.
Definition: dataset.h:351
dual2 sqrt(dual2 x)
Compute the square root of a second order dual number.
Definition: dual2_functions.h:54
bool is_nan(const T &x)
Check whether a generic variable is (equivalent to) a NaN number.
Definition: error.h:70
dual2 abs(dual2 x)
Compute the absolute value of a second order dual number.
Definition: dual2_functions.h:198
std::remove_reference_t< decltype(std::declval< Structure >()(0, 0))> matrix_element_t
Extract the type of a matrix (or any doubly indexable container) from its operator().
Definition: core_traits.h:140
std::remove_reference_t< decltype(std::declval< Structure >()[0])> vector_element_t
Extract the type of a vector (or any indexable container) from its operator[].
Definition: core_traits.h:134
constexpr real ALGEBRA_ELEMENT_TOL
Tolerance for the elements of matrices.
Definition: constants.h:270
auto sum(const Vector &X)
Compute the sum of a vector of real values using pairwise summation to reduce round-off error.
Definition: dataset.h:219
dual2 conjugate(dual2 x)
Return the conjugate of a second order dual number.
Definition: dual2_functions.h:35
constexpr real MACH_EPSILON
Machine epsilon for the real type.
Definition: constants.h:207
constexpr real E
The Euler mathematical constant (e)
Definition: constants.h:237
constexpr real ALGEBRA_EIGEN_ITER
Maximum number of iterations for eigensolvers.
Definition: constants.h:276
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54
constexpr real ALGEBRA_EIGEN_TOL
Tolerance for eigensolvers.
Definition: constants.h:273