Theoretica
Mathematical Library
Loading...
Searching...
No Matches
complex_analysis.h
Go to the documentation of this file.
1
5
6#ifndef THEORETICA_COMPLEX_FUNCTIONS
7#define THEORETICA_COMPLEX_FUNCTIONS
8
9#include "./complex.h"
10#include "../core/real_analysis.h"
11
12
13namespace theoretica {
14
15
18 template<typename T>
19 inline complex<T> identity(complex<T> z) {
20 return z;
21 }
22
23
26 template<typename T>
27 inline complex<T> conjugate(complex<T> z) {
28 return complex<T>(z.a, -z.b);
29 }
30
31
34 template<typename T>
35 inline complex<T> inverse(complex<T> z) {
36 return conjugate(z) / z.sqr_norm();
37 }
38
39
42 template<typename T>
43 inline complex<T> square(complex<T> z) {
44 return complex<T>(
45 square(z.Re()) - square(z.Im()),
46 2 * z.Re() * z.Im()
47 );
48 }
49
50
53 template<typename T>
54 inline complex<T> cube(complex<T> z) {
55 return complex<T>(
56 cube(z.Re()) - 3 * z.Re() * square(z.Im()),
57 3 * square(z.Re()) * z.Im() - cube(z.Im()));
58 }
59
60
66 template<typename T>
67 inline complex<T> powf(complex<T> z, real p) {
68
69 if(abs(z.Re()) < MACH_EPSILON && abs(z.Im()) < MACH_EPSILON) {
70
71 if(abs(p) < MACH_EPSILON) {
72 TH_MATH_ERROR("powf(complex, real)", 0, MathError::ImpossibleOperation);
73 return complex<T>(nan(), nan());
74 }
75
76 return complex<T>(0, 0);
77 }
78
79 const real rho = powf(z.norm(), p);
80 const real theta = p * z.arg();
81
82 return complex<T>(rho * th::cos(theta), rho * th::sin(theta));
83 }
84
85
88 template<typename T>
89 inline complex<T> exp(complex<T> z) {
90 return complex<T>(cos(z.Im()), sin(z.Im())) * exp(z.Re());
91 }
92
93
96 template<typename T>
97 inline real abs(complex<T> z) {
98 return z.norm();
99 }
100
101
104 template<typename T>
105 inline complex<T> sin(complex<T> z) {
106
107 const complex<T> t = z * complex<>::i();
108 return (exp(t) - exp(-t)) * complex<T>(0, -0.5);
109 }
110
111
114 template<typename T>
115 inline complex<T> cos(complex<T> z) {
116
117 const complex<T> t = z * complex<>::i();
118 return (exp(t) + exp(-t)) / 2.0;
119 }
120
121
124 template<typename T>
125 inline complex<T> tan(complex<T> z) {
126
127 const complex<T> t = exp(z * complex<T>(0, 2));
128 return (t - complex<T>(1, 0)) / (t + complex<T>(1, 0)) * complex<T>(0, -1);
129 }
130
131
134 template<typename T>
135 inline complex<T> sqrt(complex<T> z) {
136
137 if(abs(z.a) < MACH_EPSILON && abs(z.b) < MACH_EPSILON)
138 return complex<T>(0);
139
140 return complex<T>(
141 INVSQR2 * sqrt((z.norm() + z.Re())),
142 INVSQR2 * sqrt((z.norm() - z.Re())) * sgn(z.b));
143 }
144
145
148 template<typename T>
149 inline complex<T> ln(complex<T> z) {
150 return complex<T>(ln(z.norm()), z.arg());
151 }
152
153
156 template<typename T>
157 inline complex<T> asin(complex<T> z) {
158
159 // For real z in [-1, 1], use real asin
160 if(abs(z.Im()) < MACH_EPSILON && abs(z.Re()) <= 1.0 + MACH_EPSILON) {
161 T real_part = (z.Re() > 1.0) ? 1.0 : ((z.Re() < -1.0) ? -1.0 : z.Re());
162 return complex<T>(asin(real_part), 0);
163 }
164
165 // General formula with better stability
166 return ln(complex<>::i() * z + sqrt(complex<T>(1, 0) - square(z))) * complex<T>(0, -1);
167 }
168
169
172 template<typename T>
173 inline complex<T> acos(complex<T> z) {
174
175 // For real z in [-1, 1], use real acos
176 if(abs(z.Im()) < MACH_EPSILON && abs(z.Re()) <= 1.0 + MACH_EPSILON) {
177 const T real_part = (z.Re() > 1.0) ? 1.0 : ((z. Re() < -1.0) ? -1.0 : z.Re());
178 return complex<T>(acos(real_part), 0);
179 }
180
181 // General formula
182 return ln(z + sqrt(square(z) - complex<T>(1, 0))) * complex<T>(0, -1);
183 }
184
185
188 template<typename T>
189 inline complex<T> atan(complex<T> z) {
190
191 return ln((complex<>::i() - z) / (complex<>::i() + z)) * complex<T>(0, -0.5);
192 }
193
194}
195
196#endif
Complex number in algebraic form .
Definition complex.h:26
static constexpr complex i()
Imaginary unit.
Definition complex.h:336
real Re() const
Return real part.
Definition dual2.h:85
Complex number class.
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition error.h:238
Main namespace of the library which contains all functions and objects.
Definition algebra.h:27
double real
A real number, defined as a floating point type.
Definition constants.h:198
dual2 sqrt(dual2 x)
Compute the square root of a second order dual number.
Definition dual2_functions.h:54
dual2 ln(dual2 x)
Compute the natural logarithm of a second order dual number.
Definition dual2_functions.h:151
dual2 abs(dual2 x)
Compute the absolute value of a second order dual number.
Definition dual2_functions.h:198
dual2 asin(dual2 x)
Compute the arcsine of a second order dual number.
Definition dual2_functions.h:204
complex< T > identity(complex< T > z)
Complex identity.
Definition complex_analysis.h:19
dual2 exp(dual2 x)
Compute the exponential of a second order dual number.
Definition dual2_functions.h:138
complex< T > inverse(complex< T > z)
Compute the conjugate of a complex number.
Definition complex_analysis.h:35
constexpr real INVSQR2
The inverse of the square root of 2.
Definition constants.h:264
dual2 conjugate(dual2 x)
Return the conjugate of a second order dual number.
Definition dual2_functions.h:35
TH_CONSTEXPR real nan()
Return a quiet NaN number in floating point representation.
Definition error.h:78
dual2 cos(dual2 x)
Compute the cosine of a second order dual number.
Definition dual2_functions.h:86
@ ImpossibleOperation
Mathematically impossible operation.
constexpr real MACH_EPSILON
Machine epsilon for the real type.
Definition constants.h:207
dual2 tan(dual2 x)
Compute the tangent of a second order dual number.
Definition dual2_functions.h:100
dual2 acos(dual2 x)
Compute the arcosine of a second order dual number.
Definition dual2_functions.h:223
int sgn(real x)
Return the sign of x (1 if positive, -1 if negative, 0 if null)
Definition real_analysis.h:259
complex< T > powf(complex< T > z, real p)
Compute a complex number raised to a real power.
Definition complex_analysis.h:67
dual2 sin(dual2 x)
Compute the sine of a second order dual number.
Definition dual2_functions.h:72
dual2 square(dual2 x)
Return the square of a second order dual number.
Definition dual2_functions.h:23
dual2 atan(dual2 x)
Compute the arctangent of a second order dual number.
Definition dual2_functions.h:242
dual2 cube(dual2 x)
Return the cube of a second order dual number.
Definition dual2_functions.h:29