Theoretica
A C++ numerical and automatic mathematical library
dataset.h
Go to the documentation of this file.
1 
5 
6 #ifndef THEORETICA_DATASET_H
7 #define THEORETICA_DATASET_H
8 
9 #ifndef THEORETICA_NO_PRINT
10 #include <sstream>
11 #include <ostream>
12 #endif
13 
14 #include "./core_traits.h"
15 #include "./constants.h"
16 #include "./error.h"
17 
18 
19 namespace theoretica {
20 
21 
22  // Operations on datasets and generic ordered sets of numbers
23  // The Vector type must have size() and operator[]() methods
24  // (e.g. std::vector<real> and vec<real>)
25 
26 
28  template<typename Vector, enable_vector<Vector> = true>
29  inline auto product(const Vector& X) {
30 
31  if(!X.size()) {
32  TH_MATH_ERROR("product", X.size(), INVALID_ARGUMENT);
33  return vector_element_t<Vector>(nan());
34  }
35 
36  auto res = X[0];
37  for(unsigned int i = 1; i < X.size(); i++)
38  res *= X[i];
39 
40  return res;
41  }
42 
43 
45  template<typename Vector>
46  inline auto product_sum(const Vector& X, const Vector& Y) {
47 
48  if(X.size() != Y.size() || !X.size()) {
49  TH_MATH_ERROR("product_sum", X.size(), INVALID_ARGUMENT);
50  return nan();
51  }
52 
53  auto res = X[0] * Y[0];
54  for(unsigned int i = 1; i < X.size(); i++)
55  res += X[i] * Y[i];
56 
57  return res;
58  }
59 
60 
62  template<typename Vector>
63  inline auto product_sum_squares(const Vector& X, const Vector& Y) {
64 
65  if(X.size() != Y.size() || !X.size()) {
66  TH_MATH_ERROR("product_sum_squares", X.size(), INVALID_ARGUMENT);
67  return nan();
68  }
69 
70  auto res = (X[0] * X[0]) * (Y[0] * Y[0]);
71 
72  for(unsigned int i = 1; i < X.size(); i++)
73  res += (X[i] * X[i]) * (Y[i] * Y[i]);
74 
75  return res;
76  }
77 
78 
80  template<typename Vector>
81  inline auto product_sum(const Vector& X, const Vector& Y, const Vector& Z) {
82 
83  if(X.size() != Y.size() || X.size() != Z.size() || !X.size()) {
84  TH_MATH_ERROR("product_sum", X.size(), INVALID_ARGUMENT);
85  return nan();
86  }
87 
88  auto res = X[0] * Y[0] * Z[0];
89  for(unsigned int i = 1; i < X.size(); i++)
90  res += X[i] * Y[i] * Z[i];
91 
92  return res;
93  }
94 
95 
97  template<typename Vector>
98  inline auto quotient_sum(const Vector& X, const Vector& Y) {
99 
100  if(X.size() != Y.size()) {
101  TH_MATH_ERROR("quotient_sum", X.size(), INVALID_ARGUMENT);
102  return nan();
103  }
104 
105  if(abs(Y[0]) < MACH_EPSILON) {
106  TH_MATH_ERROR("quotient_sum", Y[0], DIV_BY_ZERO);
107  return nan();
108  }
109 
110  auto res = X[0] / Y[0];
111  for(unsigned int i = 1; i < X.size(); i++) {
112 
113  if(abs(Y[i]) < MACH_EPSILON) {
114  TH_MATH_ERROR("quotient_sum", Y[i], DIV_BY_ZERO);
115  return nan();
116  }
117 
118  res += X[i] / Y[i];
119  }
120 
121  return res;
122  }
123 
124 
126  template<typename Vector>
127  inline auto sum_squares(const Vector& X) {
128 
129  if(!X.size()) {
130  TH_MATH_ERROR("sum_squares", X.size(), INVALID_ARGUMENT);
131  return nan();
132  }
133 
134  auto res = X[0] * X[0];
135  for(unsigned int i = 1; i < X.size(); i++)
136  res += X[i] * X[i];
137 
138  return res;
139  }
140 
141 
147  template<typename Vector>
148  inline real sum_compensated(const Vector& X) {
149 
150  // Total sum
151  real sum = 0;
152 
153  // Correction term
154  real corr = 0;
155 
156  for (unsigned int i = 0; i < X.size(); i++) {
157 
158  const real temp = sum + X[i];
159 
160  // Sort the two addends to preserve bits
161  corr += (abs(sum) >= abs(X[i]))
162  ? ((sum - temp) + X[i])
163  : ((X[i] - temp) + sum);
164 
165  sum = temp;
166  }
167 
168  // Apply correction
169  return sum + corr;
170  }
171 
172 
181  template<typename Vector>
183  const Vector& X, size_t begin = 0,
184  size_t end = 0, size_t base_size = 128) {
185 
186  if(end == 0)
187  end = X.size();
188 
189  real sum = 0;
190 
191  // Base case with given size (defaults to 128)
192  if((end - begin) <= base_size) {
193 
194  for (size_t i = begin; i < end; ++i)
195  sum += X[i];
196 
197  } else {
198 
199  // Recursive sum of two halves
200  const size_t m = (end - begin) / 2;
201  const size_t cutoff = begin + m;
202 
203  sum = sum_pairwise(X, begin, cutoff, base_size)
204  + sum_pairwise(X, cutoff, end, base_size);
205  }
206 
207  return sum;
208  }
209 
210 
215  template <
216  typename Vector,
217  std::enable_if_t<has_real_elements<Vector>::value> = true
218  >
219  inline auto sum(const Vector& X) {
220  return sum_pairwise(X);
221  }
222 
223 
227  template<typename Vector>
228  inline auto sum(const Vector& X) {
229 
230  // Use pairwise sum to reduce floating point errors.
232  return sum_pairwise(X);
233 
234  auto res = X[0];
235  for(unsigned int i = 1; i < X.size(); i++)
236  res += X[i];
237 
238  return res;
239  }
240 
241 
249  template<typename Vector, typename Function>
250  inline Vector& apply(Function f, Vector& X) {
251 
252  for (unsigned int i = 0; i < X.size(); i++)
253  X[i] = f(X[i]);
254 
255  return X;
256  }
257 
258 
265  template<typename Vector1, typename Vector2 = Vector1, typename Function>
266  inline Vector2& map(Function f, const Vector1& src, Vector2& dest) {
267 
268  if(src.size() != dest.size()) {
269  TH_MATH_ERROR("th::map", dest.size(), INVALID_ARGUMENT);
270  dest = Vector2(nan());
271  return dest;
272  }
273 
274  for (unsigned int i = 0; i < src.size(); i++)
275  dest[i] = f(src[i]);
276 
277  return dest;
278  }
279 
280 
286  template<typename Vector2, typename Vector1, typename Function>
287  inline Vector2 map(Function f, const Vector1& X) {
288 
289  Vector2 res;
290  res.resize(X.size());
291 
292  for (unsigned int i = 0; i < X.size(); i++)
293  res[i] = f(X[i]);
294 
295  return res;
296  }
297 
298 
304  template<typename Vector, typename Function>
305  inline Vector map(Function f, const Vector& X) {
306  return map<Vector, Vector, Function>(f, X);
307  }
308 
309 
311  template<typename Vector1, typename Vector2, typename Vector3 = Vector1>
312  inline Vector3 concatenate(const Vector1& v1, const Vector2& v2) {
313 
314  Vector3 res;
315  res.resize(v1.size() + v2.size());
316  const unsigned int offset = v1.size();
317 
318  for (unsigned int i = 0; i < offset; ++i)
319  res[i] = v1[i];
320 
321  for (unsigned int i = 0; i < v2.size(); ++i)
322  res[i + offset] = v2[i];
323 
324  return res;
325  }
326 
327 
329  template<typename Vector>
330  inline auto max(const Vector& X) {
331 
332  using Type = vector_element_t<Vector>;
333 
334  if(!X.size()) {
335  TH_MATH_ERROR("max", X.size(), INVALID_ARGUMENT);
336  return Type(nan());
337  }
338 
339  auto curr = X[0];
340 
341  for (unsigned int i = 1; i < X.size(); ++i)
342  if(X[i] > curr)
343  curr = X[i];
344 
345  return curr;
346  }
347 
348 
350  template<typename Vector>
351  inline auto min(const Vector& X) {
352 
353  using Type = vector_element_t<Vector>;
354 
355  if(!X.size()) {
356  TH_MATH_ERROR("min", X.size(), INVALID_ARGUMENT);
357  return Type(nan());
358  }
359 
360  auto curr = X[0];
361 
362  for (unsigned int i = 1; i < X.size(); ++i)
363  if(X[i] < curr)
364  curr = X[i];
365 
366  return curr;
367  }
368 
369 
370  // Different types of means
371 
372 
374  template<typename Dataset>
375  inline real arithmetic_mean(const Dataset& data) {
376 
377  if(!data.size()) {
378  TH_MATH_ERROR("arithmetic_mean", data.size(), DIV_BY_ZERO);
379  return nan();
380  }
381 
382  // Sum of x_i / N
383  return sum(data) / (real) data.size();
384  }
385 
386 
388  template<typename Dataset>
389  inline real harmonic_mean(const Dataset& data) {
390 
391  if(!data.size()) {
392  TH_MATH_ERROR("harmonic_mean", data.size(), DIV_BY_ZERO);
393  return nan();
394  }
395 
396  real res = 0;
397 
398  for (unsigned int i = 0; i < data.size(); ++i) {
399 
400  if(data[i] == 0) {
401  TH_MATH_ERROR("harmonic_mean", data[i], DIV_BY_ZERO);
402  return nan();
403  }
404 
405  res += 1.0 / data[i];
406  }
407 
408  return static_cast<real>(data.size()) / res;
409  }
410 
411 
414  template<typename Dataset>
415  inline real geometric_mean(const Dataset& data) {
416  return root(product(data), data.size());
417  }
418 
419 
422  template<typename Dataset1, typename Dataset2>
423  inline real weighted_mean(const Dataset1& data, const Dataset2& weights) {
424 
425  // Sum of x_i * w_i / Sum of w_i
426  return product_sum(data, weights) / sum(weights);
427  }
428 
429 
432  template<typename Dataset>
433  inline real quadratic_mean(const Dataset& data) {
434 
435  if(!data.size()) {
436  TH_MATH_ERROR("quadratic_mean", data.size(), INVALID_ARGUMENT);
437  return nan();
438  }
439 
440  return sqrt(sum_squares(data) / data.size());
441  }
442 }
443 
444 #endif
Mathematical constants and default algorithm parameters.
#define TH_CONSTIF
Enable constexpr in if statements if C++17 is supported.
Definition: constants.h:169
Fundamental type traits.
Error handling.
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:198
real weighted_mean(const Dataset1 &data, const Dataset2 &weights)
Compute the weighted mean of a set of values <data> and <weights> must have the same size.
Definition: dataset.h:423
real arithmetic_mean(const Dataset &data)
Compute the arithmetic mean of a set of values.
Definition: dataset.h:375
auto min(const Vector &X)
Finds the minimum value inside a dataset.
Definition: dataset.h:351
real harmonic_mean(const Dataset &data)
Compute the harmonic mean of a set of values.
Definition: dataset.h:389
real sum_compensated(const Vector &X)
Compute the sum of a set of values using the compensated Neumaier-Kahan-Babushka summation algorithm ...
Definition: dataset.h:148
dual2 sqrt(dual2 x)
Compute the square root of a second order dual number.
Definition: dual2_functions.h:54
Vector3 concatenate(const Vector1 &v1, const Vector2 &v2)
Concatenate two datasets to form a single one.
Definition: dataset.h:312
dual2 abs(dual2 x)
Compute the absolute value of a second order dual number.
Definition: dual2_functions.h:198
real sum_pairwise(const Vector &X, size_t begin=0, size_t end=0, size_t base_size=128)
Compute the sum of a set of values using pairwise summation to reduce round-off error.
Definition: dataset.h:182
std::remove_reference_t< decltype(std::declval< Structure >()[0])> vector_element_t
Extract the type of a vector (or any indexable container) from its operator[].
Definition: core_traits.h:134
auto sum(const Vector &X)
Compute the sum of a vector of real values using pairwise summation to reduce round-off error.
Definition: dataset.h:219
Vector & apply(Function f, Vector &X)
Apply a function to a set of values element-wise.
Definition: dataset.h:250
real geometric_mean(const Dataset &data)
Compute the geometric mean of a set of values as .
Definition: dataset.h:415
auto max(const Vector &X)
Finds the maximum value inside a dataset.
Definition: dataset.h:330
auto product_sum(const Vector &X, const Vector &Y)
Sum the products of two sets of values.
Definition: dataset.h:46
auto product_sum_squares(const Vector &X, const Vector &Y)
Sum the products of the squares of two sets of data.
Definition: dataset.h:63
real quadratic_mean(const Dataset &data)
Compute the quadratic mean (Root Mean Square) of a set of values .
Definition: dataset.h:433
auto quotient_sum(const Vector &X, const Vector &Y)
Sum the quotients of two sets of values.
Definition: dataset.h:98
constexpr real MACH_EPSILON
Machine epsilon for the real type.
Definition: constants.h:207
real root(real x, int n)
Compute the n-th root of x.
Definition: real_analysis.h:812
Vector2 & map(Function f, const Vector1 &src, Vector2 &dest)
Get a new vector obtained by applying the function element-wise.
Definition: dataset.h:266
auto product(const Vector &X)
Compute the product of a set of values.
Definition: dataset.h:29
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54
auto sum_squares(const Vector &X)
Sum the squares of a set of values.
Definition: dataset.h:127
Type trait to check whether a type represents a real number.
Definition: core_traits.h:30