Theoretica
A C++ numerical and automatic mathematical library
multidual.h
Go to the documentation of this file.
1 #ifndef THEORETICA_MULTIDUAL_H
2 #define THEORETICA_MULTIDUAL_H
3 
4 
8 
9 #ifndef THEORETICA_NO_PRINT
10 #include <sstream>
11 #include <ostream>
12 #endif
13 
14 #include "../algebra/vec.h"
15 #include "../algebra/mat.h"
16 
17 
18 namespace theoretica {
19 
25  template<unsigned int N = 0>
26  class multidual {
27 
28  public:
29 
32 
36 
37  // The template argument of the vector type used
38  static constexpr size_t vector_argument = N;
39 
40 
43  multidual() : a(0) {}
44 
45 
48  multidual(real r, vec<real, N> u) : a(r), v(u) {}
49 
50 
53  multidual(real r) : a(r), v(vec<real, N>()) {}
54 
55  ~multidual() = default;
56 
57 
59  inline multidual& operator=(real x) {
60  a = x;
61  v = vec<real, N>();
62  return *this;
63  }
64 
65 
67  inline real Re() const {
68  return a;
69  }
70 
71 
73  inline real& Re() {
74  return a;
75  }
76 
77 
79  inline vec<real, N> Dual() const {
80  return v;
81  }
82 
83 
85  inline vec<real, N>& Dual() {
86  return v;
87  }
88 
89 
91  inline multidual conjugate() const {
92  return multidual(a, -v);
93  }
94 
95 
97  inline multidual inverse() const {
98 
99  if(a == 0) {
100  TH_MATH_ERROR("multidual::inverse", 0, DIV_BY_ZERO);
101  return multidual(nan(), vec<real, N>(nan(), N));
102  }
103 
104  return multidual(1.0 / a, v * (-1 / (a * a)));
105  }
106 
107 
109  inline multidual operator+() const {
110  return multidual(a, v);
111  }
112 
113 
115  inline multidual operator+(const multidual& other) const {
116  return multidual(a + other.a, v + other.v);
117  }
118 
119 
121  inline multidual operator+(real r) const {
122  return multidual(a + r, v);
123  }
124 
125 
127  inline multidual operator-() const {
128  return multidual(-a, -v);
129  }
130 
131 
133  inline multidual operator-(const multidual& other) const {
134  return multidual(a - other.a, v - other.v);
135  }
136 
137 
139  inline multidual operator-(real r) const {
140  return multidual(a - r, v);
141  }
142 
143 
145  inline multidual operator*(const multidual& other) const {
146  return multidual(a * other.a, other.v * a + v * other.a);
147  }
148 
149 
151  inline multidual operator*(real r) const {
152  return multidual(a * r, v * r);
153  }
154 
155 
157  inline multidual operator/(const multidual& other) const {
158 
159  if(a == 0) {
160  TH_MATH_ERROR("multidual::operator/", 0, DIV_BY_ZERO);
161  return multidual(nan(), vec<real, N>(nan(), N));
162  }
163 
164  return multidual(a / other.a,
165  (v * other.a - other.v * a) / (other.a * other.a));
166  }
167 
169  inline multidual operator/(real r) const {
170  return multidual(a / r, v / r);
171  }
172 
173 
175  inline multidual& operator+=(const multidual& other) {
176 
177  a += other.a;
178  v += other.v;
179  return *this;
180  }
181 
182 
184  inline multidual& operator+=(real r) {
185 
186  a += r;
187  return *this;
188  }
189 
191  inline multidual& operator-=(const multidual& other) {
192 
193  a -= other.a;
194  v -= other.v;
195  return *this;
196  }
197 
199  inline multidual& operator-=(real r) {
200 
201  a -= r;
202  return *this;
203  }
204 
206  inline multidual& operator*=(const multidual& other) {
207 
208  a = (a * other.a);
209  v = (other.v * a) + (v * other.a);
210  return *this;
211  }
212 
214  inline multidual& operator*=(real r) {
215 
216  a *= r;
217  v *= r;
218  return *this;
219  }
220 
222  inline multidual& operator/=(const multidual& other) {
223 
224  a = (a / other.a);
225  v = (v * other.a - other.v * a) / (other.a * other.a);
226  return *this;
227  }
228 
230  inline multidual& operator/=(real r) {
231 
232  if(r == 0) {
233  TH_MATH_ERROR("multidual::operator/=", 0, DIV_BY_ZERO);
234  a = nan();
235  v = vec<real, N>(nan(), N);
236  return *this;
237  }
238 
239  a /= r;
240  v /= r;
241 
242  return *this;
243  }
244 
245 
248  inline bool operator==(const multidual& other) {
249  return (a == other.a) && (v == other.v);
250  }
251 
252 
256  inline static vec<multidual<N>, N> make_argument(
257  const vec<real, N>& x) {
258 
259  vec<multidual<N>, N> arg;
260  arg.resize(x.size());
261 
262  for (unsigned int i = 0; i < x.size(); ++i)
263  arg[i] = multidual<N>(
264  x[i], vec<real, N>::euclidean_base(i, x.size())
265  );
266 
267  return arg;
268  }
269 
270 
273  inline static vec<real, N> extract_real(
274  const vec<multidual<N>, N>& v) {
275 
276  vec<real, N> x;
277  x.resize(v.size());
278 
279  for (unsigned int i = 0; i < N; ++i)
280  x[i] = v.get(i).Re();
281 
282  return x;
283  }
284 
285 
290  const vec<multidual<N>, N>& v) {
291 
292  mat<real, N, N> J;
293  J.resize(v.size(), v.size());
294 
295  for (unsigned int i = 0; i < N; ++i)
296  for (unsigned int j = 0; j < N; ++j)
297  J.at(j, i) = v.get(j).Dual().get(i);
298 
299  return J;
300  }
301 
302 
306  inline static void extract(
307  const vec<multidual<N>, N>& v,
308  vec<real, N>& x,
309  mat<real, N, N>& J) {
310 
311  for (unsigned int i = 0; i < N; ++i) {
312 
313  for (unsigned int j = 0; j < N; ++j)
314  J.at(j, i) = v.get(j).Dual().get(i);
315 
316  x[i] = v.get(i).Re();
317  }
318  }
319 
320 
323  unsigned int size() const {
324  return v.size();
325  }
326 
327 
330  inline void resize(unsigned int size) {
331  v.resize(size);
332  }
333 
334 
335  // Friend operators to enable equations of the form
336  // (real) op. (multidual)
337 
338  inline friend multidual operator+(real a, const multidual& d) {
339  return d + a;
340  }
341 
342  inline friend multidual operator-(real a, const multidual& d) {
343  return -d + a;
344  }
345 
346  inline friend multidual operator*(real a, const multidual& d) {
347  return d * a;
348  }
349 
350  inline friend multidual operator/(real a, const multidual& d) {
351  return a * d.inverse();
352  }
353 
354 
355 #ifndef THEORETICA_NO_PRINT
356 
359  inline std::string to_string(const std::string& epsilon = "e") const {
360 
361  std::stringstream res;
362  res << a << " + " << v << epsilon;
363 
364  return res.str();
365  }
366 
367 
369  inline operator std::string() {
370  return to_string();
371  }
372 
373 
376  inline friend std::ostream& operator<<(std::ostream& out, const multidual& obj) {
377  return out << obj.to_string();
378  }
379 
380 #endif
381 
382  };
383 
384 }
385 
386 #endif
A generic matrix with a fixed number of rows and columns.
Definition: mat.h:136
mat< Type, N, K > resize(unsigned int n, unsigned int k) const
Compatibility function to allow for allocation or resizing of dynamic matrices.
Definition: mat.h:716
Type & at(unsigned int i, unsigned int j)
Accesses the element at the given row and column.
Definition: mat.h:487
Multidual number algebra for functions of the form .
Definition: multidual.h:26
multidual operator+(const multidual &other) const
Sum two multidual numbers.
Definition: multidual.h:115
multidual operator+() const
Identity (for consistency)
Definition: multidual.h:109
multidual operator/(const multidual &other) const
Dual division.
Definition: multidual.h:157
bool operator==(const multidual &other)
Check whether two multidual numbers have the same real and multidual parts.
Definition: multidual.h:248
multidual & operator+=(const multidual &other)
Sum a real number to this one.
Definition: multidual.h:175
multidual & operator/=(const multidual &other)
Divide this multidual number by another one.
Definition: multidual.h:222
vec< real, N > v
The dual part of the multidimensional dual number as a real vector.
Definition: multidual.h:35
unsigned int size() const
Get the number of independent variables associated with the multidual number.
Definition: multidual.h:323
multidual operator-(real r) const
Subtract a real number from a multidual number.
Definition: multidual.h:139
multidual & operator-=(const multidual &other)
Subtract a real number from this one.
Definition: multidual.h:191
multidual operator*(const multidual &other) const
Multiply two multidual numbers.
Definition: multidual.h:145
real & Re()
Access the real part.
Definition: multidual.h:73
multidual operator*(real r) const
Multiply a multidual number by a real number.
Definition: multidual.h:151
static mat< real, N, N > extract_dual(const vec< multidual< N >, N > &v)
Extract the dual matrix (Jacobian) from a vector of multidual numbers as a mat<N, N>
Definition: multidual.h:289
multidual(real r, vec< real, N > u)
Construct a multidual number from a real number and an N dimensional vector.
Definition: multidual.h:48
multidual & operator*=(real r)
Multiply this multidual number by a real number.
Definition: multidual.h:214
real a
The real part of the multidimensional dual number.
Definition: multidual.h:31
multidual operator/(real r) const
Divide a multidual number by a real number.
Definition: multidual.h:169
multidual & operator+=(real r)
Sum a real number to this multidual number.
Definition: multidual.h:184
vec< real, N > Dual() const
Get the multidual part.
Definition: multidual.h:79
static vec< multidual< N >, N > make_argument(const vec< real, N > &x)
Construct an N-dimensional vector of multidual numbers to be passed as argument to a multidual functi...
Definition: multidual.h:256
multidual & operator*=(const multidual &other)
Multiply this multidual number by another one.
Definition: multidual.h:206
multidual(real r)
Construct a multidual number from a real number.
Definition: multidual.h:53
real Re() const
Get the real part.
Definition: multidual.h:67
std::string to_string(const std::string &epsilon="e") const
Convert the multidual number to string representation.
Definition: multidual.h:359
vec< real, N > & Dual()
Access the multidual part.
Definition: multidual.h:85
multidual & operator/=(real r)
Divide a multidual number by a real number.
Definition: multidual.h:230
multidual & operator-=(real r)
Subtract a real number from this multidual number.
Definition: multidual.h:199
multidual inverse() const
Get the inverse of a multidual number.
Definition: multidual.h:97
multidual operator+(real r) const
Sum a real number to a multidual number.
Definition: multidual.h:121
multidual & operator=(real x)
Initialize a multidual number from a real number.
Definition: multidual.h:59
multidual operator-() const
Get the opposite of a multidual number.
Definition: multidual.h:127
friend std::ostream & operator<<(std::ostream &out, const multidual &obj)
Stream the multidual number in string representation to an output stream (std::ostream)
Definition: multidual.h:376
static void extract(const vec< multidual< N >, N > &v, vec< real, N > &x, mat< real, N, N > &J)
Extract the real vector and dual matrix from a vector of multidual numbers as a vec<real,...
Definition: multidual.h:306
void resize(unsigned int size)
Change the size of the dual part of the number (only for dynamically allocated vectors)
Definition: multidual.h:330
multidual conjugate() const
Get the multidual conjugate.
Definition: multidual.h:91
multidual()
Construct a multidual number as .
Definition: multidual.h:43
static vec< real, N > extract_real(const vec< multidual< N >, N > &v)
Extract the real vector from a vector of multidual numbers as a vec<real, N>
Definition: multidual.h:273
multidual operator-(const multidual &other) const
Subtract two multidual numbers.
Definition: multidual.h:133
A statically allocated N-dimensional vector with elements of the given type.
Definition: vec.h:92
void resize(size_t n) const
Compatibility function to allow for allocation or resizing of dynamic vectors.
Definition: vec.h:416
TH_CONSTEXPR unsigned int size() const
Returns the size of the vector (N)
Definition: vec.h:406
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:198
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54