6 #ifndef THEORETICA_ODE_H
7 #define THEORETICA_ODE_H
9 #include "../algebra/vec.h"
22 template<
typename Vector = vec<real>>
49 #ifndef THEORETICA_NO_PRINT
52 inline std::string
to_string(
const std::string& separator =
" ")
const {
54 if (
t.
size() !=
x.size()) {
59 std::stringstream res;
61 for (
unsigned int i = 0; i <
t.
size(); ++i) {
63 res <<
t[i] << separator;
65 for (
unsigned int j = 0; j <
x[i].size(); ++j) {
69 if(j !=
x[i].size() - 1)
81 inline operator std::string() {
122 template<
typename Vector>
139 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
142 return x + h * f(t, x);
155 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
158 return x + h * f(t + h / 2.0, x + f(t, x) * h / 2.0);
171 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
174 const Vector x_p = x + h * f(t, x);
175 const real t_new = t + h;
177 return x + (f(t, x) + f(t_new, x_p)) * (h / 2.0);
191 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
194 const Vector k1 = f(t, x);
195 const Vector k2 = f(t + (h / 2.0), x + k1 * (h / 2.0));
211 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
214 const real half = h / 2.0;
216 const Vector k1 = f(t, x);
217 const Vector k2 = f(t + half, x + k1 * half);
218 const Vector k3 = f(t + half, x + k2 * half);
219 const Vector k4 = f(t + h, x + k3 * h);
221 return x + (k1 + k2 * 2.0 + k3 * 2.0 + k4) * (h / 6.0);
235 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
238 const Vector k1 = f(t, x);
239 const Vector k2 = f(t + (h / 3.0), x + k1 * (h / 3.0));
240 const Vector k3 = f(t + (h * 2.0 / 3.0), x + h * (-k1 / 3.0 + k2));
241 const Vector k4 = f(t + h, x + h * (k1 - k2 + k1));
243 return x + (k1 + 3.0 * k2 + 3.0 * k3 + k4) * (h / 8.0);
257 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
259 OdeFunction f,
const Vector& x0,
real t0,
260 const Vector& x1,
real t1,
real h = 0.001) {
262 return x1 + h * ((3. / 2.) * f(t1, x1) - f(t0, x0) / 2.);
276 template<
typename Vector,
typename OdeFunction = ode_function<Vector>>
278 OdeFunction f,
const Vector& x0,
real t0,
const Vector& x1,
real t1,
279 const Vector& x2,
real t2,
real h = 0.001) {
282 (23. / 12.) * f(t2, x2) - (4. / 3.) * f(t1, x1) + (3. / 8.) * f(t0, x0)
308 typename Vector,
typename OdeFunction = ode_function<Vector>,
309 typename StepFunction = std::function<Vector(OdeFunction,
real,
const Vector&)>
311 inline ode_solution_t<Vector>
313 OdeFunction f,
const Vector& x0,
real t0,
real tf,
314 StepFunction step,
real stepsize = 0.001) {
322 const unsigned int steps =
floor((tf - t0) / stepsize);
323 unsigned int total_steps = steps;
334 for (i = 1; i <= steps; ++i) {
335 solution.x[i] = step(f, solution.x[i - 1], solution.t[i - 1], stepsize);
336 solution.t[i] = solution.t[i - 1] + stepsize;
342 if (steps != total_steps) {
343 solution.x[i] = step(
344 f, solution.x[i - 1], solution.t[i - 1], tf - solution.t[i - 1]);
364 typename Vector,
typename OdeFunction = ode_function<Vector>
367 OdeFunction f,
const Vector& x0,
370 return solve_fixstep(f, x0, t0, tf, step_euler<Vector, OdeFunction>, stepsize);
386 typename Vector,
typename OdeFunction = ode_function<Vector>
389 OdeFunction f,
const Vector& x0,
392 return solve_fixstep(f, x0, t0, tf, step_midpoint<Vector, OdeFunction>, stepsize);
408 typename Vector,
typename OdeFunction = ode_function<Vector>
411 OdeFunction f,
const Vector& x0,
414 return solve_fixstep(f, x0, t0, tf, step_heun<Vector, OdeFunction>, stepsize);
431 typename Vector,
typename OdeFunction = ode_function<Vector>
434 OdeFunction f,
const Vector& x0,
437 return solve_fixstep(f, x0, t0, tf, step_rk2<Vector, OdeFunction>, stepsize);
454 typename Vector,
typename OdeFunction = ode_function<Vector>
457 OdeFunction f,
const Vector& x0,
460 return solve_fixstep(f, x0, t0, tf, step_rk4<Vector, OdeFunction>, stepsize);
476 typename Vector,
typename OdeFunction = ode_function<Vector>
479 OdeFunction f,
const Vector& x0,
482 return solve_fixstep(f, x0, t0, tf, step_k38<Vector, OdeFunction>, stepsize);
void resize(size_t n) const
Compatibility function to allow for allocation or resizing of dynamic vectors.
Definition: vec.h:416
TH_CONSTEXPR unsigned int size() const
Returns the size of the vector (N)
Definition: vec.h:406
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
ode_solution_t< Vector > solve_fixstep(OdeFunction f, const Vector &x0, real t0, real tf, StepFunction step, real stepsize=0.001)
Integrate an ordinary differential equation using any numerical algorithm with a constant step size,...
Definition: ode.h:312
Vector step_euler(OdeFunction f, const Vector &x, real t, real h=0.0001)
Compute one step of Euler's method for ordinary differential equations.
Definition: ode.h:140
Vector step_k38(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of Kutta's 3/8 rule method for ordinary differential equations.
Definition: ode.h:236
Vector step_rk2(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of the Runge-Kutta method of 2nd order for ordinary differential equations.
Definition: ode.h:192
std::function< Vector(real, const Vector &)> ode_function
A function representing a system of differential equations, taking as input the time (independent var...
Definition: ode.h:123
Vector step_adams3(OdeFunction f, const Vector &x0, real t0, const Vector &x1, real t1, const Vector &x2, real t2, real h=0.001)
Compute one step of the Adams-Bashforth linear multistep method of 3rd order for ordinary differentia...
Definition: ode.h:277
ode_solution_t< Vector > solve_rk2(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:433
Vector step_adams2(OdeFunction f, const Vector &x0, real t0, const Vector &x1, real t1, real h=0.001)
Compute one step of the Adams-Bashforth linear multistep method of 2nd order for ordinary differentia...
Definition: ode.h:258
ode_solution_t< Vector > solve_midpoint(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:388
ode_solution_t< Vector > solve_k38(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:478
Vector step_midpoint(OdeFunction f, const Vector &x, real t, real h=0.0001)
Compute one step of the midpoint method for ordinary differential equations.
Definition: ode.h:156
ode_solution_t< Vector > solve_euler(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:366
ode_solution_t< Vector > solve_rk4(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.01)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:456
Vector step_rk4(OdeFunction f, const Vector &x, real t, real h=0.01)
Compute one step of the Runge-Kutta method of 4th order for ordinary differential equations.
Definition: ode.h:212
ode_solution_t< Vector > solve_heun(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:410
Vector step_heun(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of Heun's method for ordinary differential equations.
Definition: ode.h:172
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:198
dual2 abs(dual2 x)
Compute the absolute value of a second order dual number.
Definition: dual2_functions.h:198
constexpr real MACH_EPSILON
Machine epsilon for the real type.
Definition: constants.h:207
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54
TH_CONSTEXPR int floor(real x)
Compute the floor of x Computes the maximum integer number that is smaller than x.
Definition: real_analysis.h:271
The base type for the solution of an ODE, holding a vector of the values of the time (independent va...
Definition: ode.h:23
friend std::ostream & operator<<(std::ostream &out, const ode_solution_t< Vector > &obj)
Stream the ODE solution in string representation to an output stream (std::ostream)
Definition: ode.h:88
vec< real > t
A vector of the time values (independent variable).
Definition: ode.h:26
ode_solution_t(size_t steps, const Vector &x0, real t0)
Prepare the structure for integration by specifying the number of total steps and the initial conditi...
Definition: ode.h:39
ode_solution_t()
Default constructor.
Definition: ode.h:33
std::string to_string(const std::string &separator=" ") const
Convert the ODE solution to string representation.
Definition: ode.h:52
vec< Vector > x
A vector of the phase space values (dependent variable).
Definition: ode.h:29