Theoretica
A C++ numerical and automatic mathematical library
ode.h
Go to the documentation of this file.
1 
5 
6 #ifndef THEORETICA_ODE_H
7 #define THEORETICA_ODE_H
8 
9 #include "../algebra/vec.h"
10 
11 
12 namespace theoretica {
13 
15  namespace ode {
16 
17 
22  template<typename Vector = vec<real>>
23  struct ode_solution_t {
24 
27 
30 
31 
34 
35 
39  ode_solution_t(size_t steps, const Vector& x0, real t0) {
40 
41  t.resize(steps);
42  x.resize(steps);
43 
44  t[0] = t0;
45  x[0] = x0;
46  }
47 
48 
49 #ifndef THEORETICA_NO_PRINT
50 
52  inline std::string to_string(const std::string& separator = " ") const {
53 
54  if (t.size() != x.size()) {
55  TH_MATH_ERROR("ode_solution_t::to_string", t.size(), INVALID_ARGUMENT);
56  return "";
57  }
58 
59  std::stringstream res;
60 
61  for (unsigned int i = 0; i < t.size(); ++i) {
62 
63  res << t[i] << separator;
64 
65  for (unsigned int j = 0; j < x[i].size(); ++j) {
66 
67  res << x[i][j];
68 
69  if(j != x[i].size() - 1)
70  res << separator;
71  else
72  res << "\n";
73  }
74  }
75 
76  return res.str();
77  }
78 
79 
81  inline operator std::string() {
82  return to_string();
83  }
84 
85 
88  inline friend std::ostream& operator<<(
89  std::ostream& out, const ode_solution_t<Vector>& obj) {
90  return out << obj.to_string();
91  }
92 #endif
93 
94  };
95 
96 
99 
100 
103 
104 
107 
108 
111 
112 
115 
116 
122  template<typename Vector>
123  using ode_function = std::function<Vector(real, const Vector&)>;
124 
125 
126  // Steppers
127  // (functions which compute one iteration of a method)
128 
129 
139  template<typename Vector, typename OdeFunction = ode_function<Vector>>
140  inline Vector step_euler(OdeFunction f, const Vector& x, real t, real h = 0.0001) {
141 
142  return x + h * f(t, x);
143  }
144 
145 
155  template<typename Vector, typename OdeFunction = ode_function<Vector>>
156  inline Vector step_midpoint(OdeFunction f, const Vector& x, real t, real h = 0.0001) {
157 
158  return x + h * f(t + h / 2.0, x + f(t, x) * h / 2.0);
159  }
160 
161 
171  template<typename Vector, typename OdeFunction = ode_function<Vector>>
172  inline Vector step_heun(OdeFunction f, const Vector& x, real t, real h = 0.001) {
173 
174  const Vector x_p = x + h * f(t, x);
175  const real t_new = t + h;
176 
177  return x + (f(t, x) + f(t_new, x_p)) * (h / 2.0);
178  }
179 
180 
191  template<typename Vector, typename OdeFunction = ode_function<Vector>>
192  inline Vector step_rk2(OdeFunction f, const Vector& x, real t, real h = 0.001) {
193 
194  const Vector k1 = f(t, x);
195  const Vector k2 = f(t + (h / 2.0), x + k1 * (h / 2.0));
196 
197  return x + k2 * h;
198  }
199 
200 
211  template<typename Vector, typename OdeFunction = ode_function<Vector>>
212  inline Vector step_rk4(OdeFunction f, const Vector& x, real t, real h = 0.01) {
213 
214  const real half = h / 2.0;
215 
216  const Vector k1 = f(t, x);
217  const Vector k2 = f(t + half, x + k1 * half);
218  const Vector k3 = f(t + half, x + k2 * half);
219  const Vector k4 = f(t + h, x + k3 * h);
220 
221  return x + (k1 + k2 * 2.0 + k3 * 2.0 + k4) * (h / 6.0);
222  }
223 
224 
235  template<typename Vector, typename OdeFunction = ode_function<Vector>>
236  inline Vector step_k38(OdeFunction f, const Vector& x, real t, real h = 0.001) {
237 
238  const Vector k1 = f(t, x);
239  const Vector k2 = f(t + (h / 3.0), x + k1 * (h / 3.0));
240  const Vector k3 = f(t + (h * 2.0 / 3.0), x + h * (-k1 / 3.0 + k2));
241  const Vector k4 = f(t + h, x + h * (k1 - k2 + k1));
242 
243  return x + (k1 + 3.0 * k2 + 3.0 * k3 + k4) * (h / 8.0);
244  }
245 
246 
257  template<typename Vector, typename OdeFunction = ode_function<Vector>>
258  inline Vector step_adams2(
259  OdeFunction f, const Vector& x0, real t0,
260  const Vector& x1, real t1, real h = 0.001) {
261 
262  return x1 + h * ((3. / 2.) * f(t1, x1) - f(t0, x0) / 2.);
263  }
264 
265 
276  template<typename Vector, typename OdeFunction = ode_function<Vector>>
277  inline Vector step_adams3(
278  OdeFunction f, const Vector& x0, real t0, const Vector& x1, real t1,
279  const Vector& x2, real t2, real h = 0.001) {
280 
281  return x2 + h * (
282  (23. / 12.) * f(t2, x2) - (4. / 3.) * f(t1, x1) + (3. / 8.) * f(t0, x0)
283  );
284  }
285 
286 
287  // Solvers
288  // (functions which solve numerically an ODE over an interval)
289 
290 
307  template <
308  typename Vector, typename OdeFunction = ode_function<Vector>,
309  typename StepFunction = std::function<Vector(OdeFunction, real, const Vector&)>
310  >
311  inline ode_solution_t<Vector>
313  OdeFunction f, const Vector& x0, real t0, real tf,
314  StepFunction step, real stepsize = 0.001) {
315 
316  if (tf < t0) {
317  TH_MATH_ERROR("ode::solve_fixstep", tf, INVALID_ARGUMENT);
318  ode_solution_t<Vector> err; err.t = Vector(nan());
319  return err;
320  }
321 
322  const unsigned int steps = floor((tf - t0) / stepsize);
323  unsigned int total_steps = steps;
324  unsigned int i;
325 
326  if (abs(t0 + steps * stepsize - tf) > MACH_EPSILON)
327  total_steps++;
328 
329  // Initialize solution structure
330  auto solution = ode_solution_t<Vector>(total_steps + 1, x0, t0);
331 
332 
333  // Iterate over each step of the numerical method
334  for (i = 1; i <= steps; ++i) {
335  solution.x[i] = step(f, solution.x[i - 1], solution.t[i - 1], stepsize);
336  solution.t[i] = solution.t[i - 1] + stepsize;
337  }
338 
339 
340  // Additional shorter step if the stepsize
341  // does not cover exactly the time interval
342  if (steps != total_steps) {
343  solution.x[i] = step(
344  f, solution.x[i - 1], solution.t[i - 1], tf - solution.t[i - 1]);
345  solution.t[i] = tf;
346  }
347 
348  return solution;
349  }
350 
351 
363  template <
364  typename Vector, typename OdeFunction = ode_function<Vector>
365  >
367  OdeFunction f, const Vector& x0,
368  real t0, real tf, real stepsize = 0.0001) {
369 
370  return solve_fixstep(f, x0, t0, tf, step_euler<Vector, OdeFunction>, stepsize);
371  }
372 
373 
385  template <
386  typename Vector, typename OdeFunction = ode_function<Vector>
387  >
389  OdeFunction f, const Vector& x0,
390  real t0, real tf, real stepsize = 0.0001) {
391 
392  return solve_fixstep(f, x0, t0, tf, step_midpoint<Vector, OdeFunction>, stepsize);
393  }
394 
395 
407  template <
408  typename Vector, typename OdeFunction = ode_function<Vector>
409  >
411  OdeFunction f, const Vector& x0,
412  real t0, real tf, real stepsize = 0.0001) {
413 
414  return solve_fixstep(f, x0, t0, tf, step_heun<Vector, OdeFunction>, stepsize);
415  }
416 
417 
430  template <
431  typename Vector, typename OdeFunction = ode_function<Vector>
432  >
434  OdeFunction f, const Vector& x0,
435  real t0, real tf, real stepsize = 0.0001) {
436 
437  return solve_fixstep(f, x0, t0, tf, step_rk2<Vector, OdeFunction>, stepsize);
438  }
439 
440 
453  template <
454  typename Vector, typename OdeFunction = ode_function<Vector>
455  >
457  OdeFunction f, const Vector& x0,
458  real t0, real tf, real stepsize = 0.01) {
459 
460  return solve_fixstep(f, x0, t0, tf, step_rk4<Vector, OdeFunction>, stepsize);
461  }
462 
463 
475  template <
476  typename Vector, typename OdeFunction = ode_function<Vector>
477  >
479  OdeFunction f, const Vector& x0,
480  real t0, real tf, real stepsize = 0.0001) {
481 
482  return solve_fixstep(f, x0, t0, tf, step_k38<Vector, OdeFunction>, stepsize);
483  }
484  }
485 }
486 
487 #endif
void resize(size_t n) const
Compatibility function to allow for allocation or resizing of dynamic vectors.
Definition: vec.h:416
TH_CONSTEXPR unsigned int size() const
Returns the size of the vector (N)
Definition: vec.h:406
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
ode_solution_t< Vector > solve_fixstep(OdeFunction f, const Vector &x0, real t0, real tf, StepFunction step, real stepsize=0.001)
Integrate an ordinary differential equation using any numerical algorithm with a constant step size,...
Definition: ode.h:312
Vector step_euler(OdeFunction f, const Vector &x, real t, real h=0.0001)
Compute one step of Euler's method for ordinary differential equations.
Definition: ode.h:140
Vector step_k38(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of Kutta's 3/8 rule method for ordinary differential equations.
Definition: ode.h:236
Vector step_rk2(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of the Runge-Kutta method of 2nd order for ordinary differential equations.
Definition: ode.h:192
std::function< Vector(real, const Vector &)> ode_function
A function representing a system of differential equations, taking as input the time (independent var...
Definition: ode.h:123
Vector step_adams3(OdeFunction f, const Vector &x0, real t0, const Vector &x1, real t1, const Vector &x2, real t2, real h=0.001)
Compute one step of the Adams-Bashforth linear multistep method of 3rd order for ordinary differentia...
Definition: ode.h:277
ode_solution_t< Vector > solve_rk2(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:433
Vector step_adams2(OdeFunction f, const Vector &x0, real t0, const Vector &x1, real t1, real h=0.001)
Compute one step of the Adams-Bashforth linear multistep method of 2nd order for ordinary differentia...
Definition: ode.h:258
ode_solution_t< Vector > solve_midpoint(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:388
ode_solution_t< Vector > solve_k38(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:478
Vector step_midpoint(OdeFunction f, const Vector &x, real t, real h=0.0001)
Compute one step of the midpoint method for ordinary differential equations.
Definition: ode.h:156
ode_solution_t< Vector > solve_euler(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:366
ode_solution_t< Vector > solve_rk4(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.01)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:456
Vector step_rk4(OdeFunction f, const Vector &x, real t, real h=0.01)
Compute one step of the Runge-Kutta method of 4th order for ordinary differential equations.
Definition: ode.h:212
ode_solution_t< Vector > solve_heun(OdeFunction f, const Vector &x0, real t0, real tf, real stepsize=0.0001)
Integrate an ordinary differential equation over a certain domain with the given initial conditions u...
Definition: ode.h:410
Vector step_heun(OdeFunction f, const Vector &x, real t, real h=0.001)
Compute one step of Heun's method for ordinary differential equations.
Definition: ode.h:172
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:198
dual2 abs(dual2 x)
Compute the absolute value of a second order dual number.
Definition: dual2_functions.h:198
constexpr real MACH_EPSILON
Machine epsilon for the real type.
Definition: constants.h:207
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54
TH_CONSTEXPR int floor(real x)
Compute the floor of x Computes the maximum integer number that is smaller than x.
Definition: real_analysis.h:271
The base type for the solution of an ODE, holding a vector of the values of the time (independent va...
Definition: ode.h:23
friend std::ostream & operator<<(std::ostream &out, const ode_solution_t< Vector > &obj)
Stream the ODE solution in string representation to an output stream (std::ostream)
Definition: ode.h:88
vec< real > t
A vector of the time values (independent variable).
Definition: ode.h:26
ode_solution_t(size_t steps, const Vector &x0, real t0)
Prepare the structure for integration by specifying the number of total steps and the initial conditi...
Definition: ode.h:39
ode_solution_t()
Default constructor.
Definition: ode.h:33
std::string to_string(const std::string &separator=" ") const
Convert the ODE solution to string representation.
Definition: ode.h:52
vec< Vector > x
A vector of the phase space values (dependent variable).
Definition: ode.h:29