Theoretica
A C++ numerical and automatic mathematical library
|
Automatic propagation of uncertainties on arbitrary functions. More...
#include "../core/core_traits.h"
#include "../algebra/vec.h"
#include "../autodiff/autodiff.h"
#include "../statistics/statistics.h"
#include "../pseudorandom/montecarlo.h"
#include "../pseudorandom/sampling.h"
Go to the source code of this file.
Namespaces | |
theoretica | |
Main namespace of the library which contains all functions and objects. | |
theoretica::stats | |
Statistical functions. | |
Functions | |
template<typename Matrix = mat<real>, typename Dataset = vec<real>, enable_vector< Dataset > = true> | |
Matrix | theoretica::stats::covar_mat (const std::vector< Dataset > &v) |
Build the covariance matrix given a vector of datasets by computing the covariance between all couples of sets. More... | |
template<unsigned int N = 0, typename MultiDualFunction = autodiff::dreal_t<N>(*)(autodiff::dvec_t<N>)> | |
real | theoretica::stats::error_propagation (MultiDualFunction f, const vec< real, N > &x_best, const vec< real, N > &delta_x) |
Automatically propagate uncertainties under quadrature on an arbitrary function given the uncertainties on the variables, the mean values of the variables and the function itself, by using automatic differentiation. More... | |
template<unsigned int N = 0, unsigned int M = 0, typename MultiDualFunction = autodiff::dreal_t<N>(*)(autodiff::dvec_t<N>)> | |
real | theoretica::stats::error_propagation (MultiDualFunction f, const vec< real, N > &x_best, const mat< real, M, M > &cm) |
Automatically propagate uncertainties under quadrature on an arbitrary function given the uncertainties on the variables, the mean values of the variables and the function itself, by using automatic differentiation. More... | |
template<unsigned int N = 0, typename MultiDualFunction = multidual<N>(*)(autodiff::dvec_t<N>), typename Dataset = vec<real, N>> | |
real | theoretica::stats::error_propagation (MultiDualFunction f, const std::vector< Dataset > &v) |
Automatically propagate uncertainties under quadrature on an arbitrary function given the function and the set of measured data. More... | |
template<typename Function > | |
real | theoretica::stats::error_propagation_mc (Function f, std::vector< pdf_sampler > &rv, unsigned int N=1E+6) |
Propagate the statistical error on a given function using the Monte Carlo method, by generating a sample following the probability distribution of the function and computing its standard deviation. More... | |
Automatic propagation of uncertainties on arbitrary functions.