Theoretica
A C++ numerical and automatic mathematical library
integral.h File Reference

Integral approximation. More...

Go to the source code of this file.

Namespaces

 theoretica
 Main namespace of the library which contains all functions and objects.
 

Functions

template<typename Field = real>
polynomial< Field > theoretica::integral (const polynomial< Field > &p)
 Compute the indefinite integral of a polynomial. More...
 
real theoretica::integral (const polynomial< real > &p, real a, real b)
 Compute the definite integral of a polynomial over an interval. More...
 
template<typename RealFunction >
real theoretica::integral_midpoint (RealFunction f, real a, real b, unsigned int steps=CALCULUS_INTEGRAL_STEPS)
 Approximate the definite integral of an arbitrary function using the midpoint method. More...
 
template<typename RealFunction >
real theoretica::integral_trapezoid (RealFunction f, real a, real b, unsigned int steps=CALCULUS_INTEGRAL_STEPS)
 Approximate the definite integral of an arbitrary function using the trapezoid method. More...
 
template<typename RealFunction >
real theoretica::integral_simpson (RealFunction f, real a, real b, unsigned int steps=CALCULUS_INTEGRAL_STEPS)
 Approximate the definite integral of an arbitrary function using Simpson's method. More...
 
template<typename RealFunction >
real theoretica::integral_romberg (RealFunction f, real a, real b, unsigned int iter=8)
 Approximate the definite integral of an arbitrary function using Romberg's method accurate to the given order. More...
 
template<typename RealFunction >
real theoretica::integral_romberg_tol (RealFunction f, real a, real b, real tolerance=CALCULUS_INTEGRAL_TOL)
 Approximate the definite integral of an arbitrary function using Romberg's method to the given tolerance. More...
 
template<typename RealFunction >
real theoretica::integral_gauss (RealFunction f, const std::vector< real > &x, const std::vector< real > &w)
 Use Gaussian quadrature using the given points and weights. More...
 
template<typename RealFunction >
real theoretica::integral_gauss (RealFunction f, real *x, real *w, unsigned int n)
 Use Gaussian quadrature using the given points and weights. More...
 
template<typename RealFunction >
real theoretica::integral_gauss (RealFunction f, real *x, real *w, unsigned int n, real_function Winv)
 Use Gaussian quadrature using the given points and weights. More...
 
template<typename RealFunction >
real theoretica::integral_legendre (RealFunction f, real a, real b, real *x, real *w, unsigned int n)
 Use Gauss-Legendre quadrature of arbitrary degree to approximate a definite integral providing the roots of the n degree Legendre polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_legendre (RealFunction f, real a, real b, const std::vector< real > &x, const std::vector< real > &w)
 Use Gauss-Legendre quadrature of arbitrary degree to approximate a definite integral providing the roots of the n degree Legendre polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_legendre (RealFunction f, real a, real b, const std::vector< real > &x)
 Use Gauss-Legendre quadrature of arbitrary degree to approximate a definite integral providing the roots of the n degree Legendre polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_legendre (RealFunction f, real a, real b, unsigned int n=16)
 Use Gauss-Legendre quadrature of degree 2, 4, 8 or 16, using pre-computed values, to approximate an integral over [a, b]. More...
 
template<typename RealFunction >
real theoretica::integral_laguerre (RealFunction f, const std::vector< real > &x)
 Use Gauss-Laguerre quadrature of arbitrary degree to approximate an integral over [0, +inf) providing the roots of the n degree Legendre polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_laguerre (RealFunction f, real a, real b, const std::vector< real > &x)
 Use Gauss-Laguerre quadrature of arbitrary degree to approximate an integral over [a, b] providing the roots of the n degree Legendre polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_laguerre (RealFunction f, unsigned int n=16)
 Use Gauss-Laguerre quadrature of degree 2, 4, 8 or 16, using pre-computed values, to approximate an integral over [0, +inf). More...
 
template<typename RealFunction >
real theoretica::integral_hermite (RealFunction f, const std::vector< real > &x)
 Use Gauss-Hermite quadrature of arbitrary degree to approximate an integral over (-inf, +inf) providing the roots of the n degree Hermite polynomial. More...
 
template<typename RealFunction >
real theoretica::integral_hermite (RealFunction f, unsigned int n=16)
 Use Gauss-Hermite quadrature of degree 2, 4, 8 or 16, using pre-computed values, to approximate an integral over (-inf, +inf). More...
 
real theoretica::integral_inf_riemann (real_function f, real a, real step_sz=1, real tol=CALCULUS_INTEGRAL_TOL, unsigned int max_iter=100)
 Integrate a function from a point up to infinity by integrating it by steps, stopping execution when the variation of the integral is small enough or the number of steps reaches a maximum value.
 
template<typename RealFunction >
real theoretica::integral (RealFunction f, real a, real b)
 Use the best available algorithm to approximate the definite integral of a real function. More...
 
template<typename RealFunction >
real theoretica::integral (RealFunction f, real a, real b, real tol)
 Use the best available algorithm to approximate the definite integral of a real function to a given tolerance. More...
 

Detailed Description

Integral approximation.