|
template<typename Function > |
using | is_dual_func = std::conditional_t< is_dual_type< typename _internal::return_type_or_void< Function, dual >::type >::value, std::true_type, std::false_type > |
| Type trait to check whether the given function takes a dual number as its first argument.
|
|
template<typename Function , typename T = bool> |
using | enable_dual_func = typename std::enable_if< is_dual_func< Function >::value, T >::type |
| Enable a certain function overload if the given type is a function taking as first argument a dual number.
|
|
template<typename Function > |
using | is_dual2_func = std::conditional_t< is_dual2_type< typename _internal::return_type_or_void< Function, dual2 >::type >::value, std::true_type, std::false_type > |
| Type trait to check whether the given function takes a dual2 number as its first argument.
|
|
template<typename Function , typename T = bool> |
using | enable_dual2_func = typename std::enable_if< is_dual2_func< Function >::value, T >::type |
| Enable a certain function overload if the given type is a function taking as first argument a dual2 number.
|
|
template<typename Type , typename T = bool> |
using | enable_multidual = typename std::enable_if< is_multidual_type< Type >::value, T >::type |
| Enable a certain function overload if the given type is an instantiation of the multidual template class.
|
|
template<typename Function , typename T = bool> |
using | enable_scalar_field = typename std::enable_if< is_multidual_type< return_type_t< Function > >::value, T >::type |
| Enable a certain function overload if the given type is a Callable object corresponding to a multidual function representing a scalar field, that is, a function taking a dvec_t and returning a dreal_t.
|
|
template<typename Function , typename T = bool> |
using | enable_vector_field = typename std::enable_if< is_multidual_type< vector_element_t< return_type_t< Function > > >::value, T >::type |
| Enable a certain function overload if the given type is a Callable object corresponding to a multidual function representing a vector field, that is, a function taking a dvec_t and returning a dvec_t.
|
|
template<unsigned int N = 0> |
using | dreal_t = multidual< N > |
| Real type for multivariate automatic differentiation (read "differential real").
|
|
template<unsigned int N = 0> |
using | dvec_t = vec< dreal_t< N >, N > |
| Vector type for multivariate automatic differentiation (read "differential vector").
|
|
using | dreal = dreal_t< 0 > |
| Real type for multivariate automatic differentiation with dynamically allocated vectors.
|
|
using | dvec = dvec_t< 0 > |
| Vector type for multivariate automatic differentiation with dynamically allocated vectors.
|
|
using | dreal2 = dreal_t< 2 > |
| Real type for multivariate automatic differentiation with two-dimensional statically allocated vectors.
|
|
using | dvec2 = dvec_t< 2 > |
| Vector type for multivariate automatic differentiation with two-dimensional statically allocated vectors.
|
|
using | dreal3 = dreal_t< 3 > |
| Real type for multivariate automatic differentiation with three-dimensional statically allocated vectors.
|
|
using | dvec3 = dvec_t< 3 > |
| Vector type for multivariate automatic differentiation with three-dimensional statically allocated vectors.
|
|
using | dreal4 = dreal_t< 4 > |
| Real type for multivariate automatic differentiation with four-dimensional statically allocated vectors.
|
|
using | dvec4 = dvec_t< 4 > |
| Vector type for multivariate automatic differentiation with four-dimensional statically allocated vectors.
|
|
|
template<typename DualFunction = std::function<dual(dual)>, enable_dual_func< DualFunction > = true> |
real | deriv (DualFunction f, real x) |
| Compute the derivative of a function at the given point using univariate automatic differentiation. More...
|
|
template<typename DualFunction = std::function<dual(dual)>, enable_dual_func< DualFunction > = true> |
auto | deriv (DualFunction f) |
| Get a lambda function which computes the derivative of the given function at the given point, using automatic differentiation. More...
|
|
template<typename Dual2Function = std::function<dual2(dual2)>, enable_dual2_func< Dual2Function > = true> |
real | deriv2 (Dual2Function f, real x) |
| Compute the second derivative of a function at the given point using univariate automatic differentiation. More...
|
|
template<typename Dual2Function = std::function<dual2(dual2)>, enable_dual2_func< Dual2Function > = true> |
auto | deriv2 (Dual2Function f) |
| Get a lambda function which computes the second derivative of the given function at the given point, using automatic differentiation. More...
|
|
template<typename MultidualType , typename Vector = vec<real>> |
auto | make_autodiff_arg (const Vector &x) |
| Prepare a vector of multidual numbers in "canonical" form, where the i-th element of the vector has a dual part which is the i-th canonical vector. More...
|
|
template<typename Function , typename Vector = vec<real>, enable_scalar_field< Function > = true, enable_vector< Vector > = true> |
auto | gradient (Function f, const Vector &x) |
| Compute the gradient \(\nabla f = \sum_i^n \vec e_i \frac{\partial}{\partial x_i} f(\vec x)\) for a given \(\vec x\) of a scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) using automatic differentiation. More...
|
|
template<typename Function , enable_scalar_field< Function > = true> |
auto | gradient (Function f) |
| Get a lambda function which computes the gradient \(\nabla f = \sum_i^n \vec e_i \frac{\partial}{\partial x_i} f(\vec x)\) of a given scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at \(\vec x\) using automatic differentiation. More...
|
|
template<typename Function , typename Vector = vec<real>, enable_scalar_field< Function > = true, enable_vector< Vector > = true> |
real | divergence (Function f, const Vector &x) |
| Compute the divergence \(\sum_i^n \frac{\partial}{\partial x_i} f(\vec x)\) for a given \(\vec x\) of a scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) using automatic differentiation. More...
|
|
template<typename Function , enable_scalar_field< Function > = true> |
auto | divergence (Function f) |
| Get a lambda function which computes the divergence of a given function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given \(\vec x\) using automatic differentiation. More...
|
|
template<unsigned int N = 0, unsigned int M = 0> |
mat< real, M, N > | jacobian (vec< multidual< N >, M >(*f)(vec< multidual< N >, N >), const vec< real, N > &x) |
| Compute the jacobian of a vector field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}^M\). More...
|
|
template<unsigned int N = 0, unsigned int M = 0> |
auto | jacobian (vec< multidual< N >, M >(*f)(vec< multidual< N >, N >)) |
| Get a lambda function which computes the jacobian of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}^M\) for a given $\vec x$. More...
|
|
template<unsigned int N = 0> |
vec< real, N > | curl (vec< multidual< N >, N >(*f)(vec< multidual< N >, N >), const vec< real, N > &x) |
| Compute the curl for a given \(\vec x\) of a vector field defined by \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) using automatic differentiation. More...
|
|
template<unsigned int N = 0> |
auto | curl (vec< multidual< N >, N >(*f)(vec< multidual< N >, N >)) |
| Get a lambda function which computes the curl for a given \(\vec x\) of a vector field defined by \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) using automatic differentiation. More...
|
|
template<unsigned int N = 0> |
vec< real, N > | directional_derivative (multidual< N >(*f)(vec< multidual< N >, N >), const vec< real, N > &x, const vec< real, N > &v) |
| Compute the directional derivative of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\). More...
|
|
template<unsigned int N = 0> |
auto | directional_derivative (multidual< N >(*f)(vec< multidual< N >, N >), const vec< real, N > &v) |
| Get a lambda function which computes the directional derivative of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\). More...
|
|
template<unsigned int N = 0> |
real | laplacian (dual2(*f)(vec< dual2, N >), const vec< real, N > &x) |
| Compute the Laplacian differential operator for a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given $\vec x$. More...
|
|
template<unsigned int N = 0> |
auto | laplacian (dual2(*f)(vec< dual2, N >)) |
| Get a lambda function which computes the Laplacian differential operator for a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given $\vec x$. More...
|
|
template<unsigned int N = 0> |
real | sturm_liouville (multidual< N >(*f)(vec< multidual< N >, N >), multidual< N >(*H)(vec< multidual< N >, N >), vec< real, N > eta) |
| Compute the Sturm-Liouville operator on a generic function of the form \(f: \mathbb{R}^{2N} \rightarrow \mathbb{R}\) with respect to a given Hamiltonian function of the form \(H: \mathbb{R}^{2N} \rightarrow \mathbb{R}\) where the first N arguments are the coordinates in phase space and the last N arguments are the conjugate momenta, for a given point in phase space. More...
|
|
Differential operators with automatic differentiation.