6 #ifndef THEORETICA_SPLINES_H
7 #define THEORETICA_SPLINES_H
9 #include "../core/constants.h"
10 #include "../algebra/algebra_types.h"
18 return (x1 + interp * (x2 - x1));
23 template<
unsigned int N>
27 return (P1 + (P2 - P1) * interp);
33 return (value - x1) / (x2 - x1);
38 template<
unsigned int N>
45 for (
int i = 1; i < N; ++i) {
61 return lerp(oFrom, oTo,
invlerp(iFrom, iTo, value));
66 template<
unsigned int N>
70 return lerp(oFrom, oTo,
invlerp(iFrom, iTo, value));
75 template<
unsigned int N>
79 return (P1 + (P2 - P1) * interp).normalized();
84 template<
unsigned int N>
95 if(P1_l == 0 || P2_l == 0) {
96 TH_MATH_ERROR(
"slerp", P1_l ? P2_l : P1_l, IMPOSSIBLE_OPERATION);
101 real omega =
acos((P1 * P2) / (P1_l * P2_l));
110 return (P1 *
sin((1 - t) * omega) + P2 *
sin(t * omega)) / s;
126 const real x =
clamp((interp - x1) / (x2 - x1), 0.0, 1.0);
129 return x * x * (3 - 2 * x);
142 const real x =
clamp((interp - x1) / (x2 - x1), 0.0, 1.0);
145 return x * x * x * (x * (x * 6 - 15) + 10);
153 template<
unsigned int N>
163 template<
unsigned int N>
175 return lerp(D,
E, t);
189 template<
unsigned int N>
192 if(points.size() < 2) {
202 for (
int index = points.size(); index > 1; --index) {
204 for (
int i = 0; i < index - 1; ++i)
205 points[i] =
lerp(points[i], points[i + 1], t);
227 :
x(
x),
a(
a), b(b), c(c), d(d) {}
233 const real h = X -
x;
234 return a + h * (b + h * (c + h * d));
241 const real h = X -
x;
242 return b + h * (c * 2 + h * d * 3);
250 template<
typename DataPo
ints = std::vector<vec2>>
258 const unsigned int n = p.size() - 1;
260 std::vector<real> dx(n);
261 std::vector<real> delta(n);
265 std::vector<real> alpha(n + 1);
266 std::vector<real>
beta(n + 1);
267 std::vector<real>
gamma(n + 1);
273 std::vector<real> b(n);
274 std::vector<real> c(n);
275 std::vector<real> d(n);
277 for (
unsigned int i = 0; i < n; ++i)
278 dx[i] = p[i + 1][0] - p[i][0];
280 for (
unsigned int i = 1; i < n; ++i)
282 ((p[i + 1][1] - p[i][1]) / dx[i])
283 - (p[i][1] - p[i - 1][1]) / dx[i - 1]);
285 for (
unsigned int i = 1; i < n; ++i) {
286 alpha[i] = 2 * (p[i + 1][0] - p[i - 1][0]) - dx[i - 1] *
beta[i - 1];
287 beta[i] = dx[i] / alpha[i];
288 gamma[i] = (delta[i] - dx[i] *
gamma[i - 1]) / alpha[i];
298 for (
int i = n - 1; i >= 0; --i) {
301 b[i] = (p[i + 1][1] - p[i][1]) / dx[i]
302 - dx[i] * (c[i + 1] + 2 * c[i]) / 3.0;
303 d[i] = (c[i + 1] - c[i]) / (3.0 * dx[i]);
306 std::vector<spline_node> nodes(n);
308 for (
unsigned int i = 0; i < n; ++i)
309 nodes[i] =
spline_node(p[i][0], p[i][1], b[i], c[i], d[i]);
318 template<
typename Dataset1,
typename Dataset2>
320 const Dataset1& x,
const Dataset2& y) {
327 if(x.size() != y.size()) {
332 const unsigned int n = x.size() - 1;
334 std::vector<real> dx(n);
335 std::vector<real> delta(n);
339 std::vector<real> alpha(n + 1);
340 std::vector<real>
beta(n + 1);
341 std::vector<real>
gamma(n + 1);
347 std::vector<real> b(n);
348 std::vector<real> c(n);
349 std::vector<real> d(n);
351 for (
unsigned int i = 0; i < n; ++i)
352 dx[i] = x[i + 1] - x[i];
354 for (
unsigned int i = 1; i < n; ++i)
356 ((y[i + 1] - y[i]) / dx[i])
357 - (y[i] - y[i - 1]) / dx[i - 1]);
359 for (
unsigned int i = 1; i < n; ++i) {
360 alpha[i] = 2 * (x[i + 1] - x[i - 1]) - dx[i - 1] *
beta[i - 1];
361 beta[i] = dx[i] / alpha[i];
362 gamma[i] = (delta[i] - dx[i] *
gamma[i - 1]) / alpha[i];
372 for (
int i = n - 1; i >= 0; --i) {
375 b[i] = (y[i + 1] - y[i]) / dx[i]
376 - dx[i] * (c[i + 1] + 2 * c[i]) / 3.0;
377 d[i] = (c[i + 1] - c[i]) / (3.0 * dx[i]);
380 std::vector<spline_node> nodes(n);
382 for (
unsigned int i = 0; i < n; ++i)
383 nodes[i] =
spline_node(x[i], y[i], b[i], c[i], d[i]);
401 template<
typename DataPo
ints = std::vector<vec2>>
409 template<
typename Dataset1,
typename Dataset2>
410 spline(
const Dataset1& X,
const Dataset2& Y) {
426 for (
int i =
int(
nodes.size()) - 1; i > 0; --i)
439 for (
unsigned int i =
nodes.size() - 1; i > 0; --i)
441 return nodes[i].deriv(x);
444 return nodes[0].deriv(x);
450 return nodes.begin();
A natural cubic spline interpolation class.
Definition: splines.h:391
spline(const Dataset1 &X, const Dataset2 &Y)
Construct the natural cubic spline interpolation from the sets of X and Y data points.
Definition: splines.h:410
real operator()(real x) const
Evaluate the natural cubic spline interpolation at a given point.
Definition: splines.h:424
real deriv(real x) const
Evaluate the derivative of the natural cubic spline interpolation at a given point.
Definition: splines.h:437
auto end()
Get an iterator to one plus the last spline element.
Definition: splines.h:455
spline & operator=(const spline &other)
Copy from another spline.
Definition: splines.h:416
auto begin()
Get an iterator to the first spline element.
Definition: splines.h:449
spline(const DataPoints &p)
Construct the natural cubic spline interpolation from a vector of coordinate pairs.
Definition: splines.h:402
std::vector< spline_node > nodes
The computed nodes of the natural cubic spline interpolation over the points.
Definition: splines.h:396
A statically allocated N-dimensional vector with elements of the given type.
Definition: vec.h:88
Type get(unsigned int i) const
Getters and setters.
Definition: vec.h:322
Type norm() const
Compute the norm of the vector (sqrt(v * v))
Definition: vec.h:292
#define TH_MATH_ERROR(F_NAME, VALUE, EXCEPTION)
TH_MATH_ERROR is a macro which throws exceptions or modifies errno (depending on which compiling opti...
Definition: error.h:219
real beta(real x1, real x2)
Beta special function of real argument.
Definition: special.h:141
real gamma(unsigned int k)
Gamma special function of positive integer argument.
Definition: special.h:23
Main namespace of the library which contains all functions and objects.
Definition: algebra.h:27
double real
A real number, defined as a floating point type.
Definition: constants.h:188
vec< real, N > nlerp(const vec< real, N > &P1, const vec< real, N > &P2, real interp)
Normalized linear interpolation.
Definition: splines.h:76
std::vector< spline_node > cubic_splines(DataPoints p)
Compute the cubic splines interpolation of a set of data points.
Definition: splines.h:251
real smootherstep(real x1, real x2, real interp)
Smootherstep interpolation.
Definition: splines.h:134
vec< real, N > slerp(const vec< real, N > &P1, const vec< real, N > &P2, real t)
Spherical interpolation.
Definition: splines.h:85
real remap(real iFrom, real iTo, real oFrom, real oTo, real value)
Remap a value from one range to another.
Definition: splines.h:60
real smoothstep(real x1, real x2, real interp)
Smoothstep interpolation.
Definition: splines.h:118
vec< real, N > bezier(const std::vector< vec< real, N >> &points, real t)
Generic Bezier curve in N dimensions.
Definition: splines.h:190
real invlerp(real x1, real x2, real value)
Inverse linear interpolation.
Definition: splines.h:32
real lerp(real x1, real x2, real interp)
Linear interpolation.
Definition: splines.h:17
constexpr real E
The Euler mathematical constant (e)
Definition: constants.h:227
vec< real, N > quadratic_bezier(const vec< real, N > &P0, const vec< real, N > &P1, const vec< real, N > &P2, real t)
Quadratic Bezier curve.
Definition: splines.h:154
dual2 acos(dual2 x)
Compute the arcosine of a second order dual number.
Definition: dual2_functions.h:206
dual2 sin(dual2 x)
Compute the sine of a second order dual number.
Definition: dual2_functions.h:70
vec< real, N > cubic_bezier(const vec< real, N > &P0, const vec< real, N > &P1, const vec< real, N > &P2, vec< real, N > P3, real t)
Cubic Bezier curve.
Definition: splines.h:164
real nan()
Return a quiet NaN number in floating point representation.
Definition: error.h:54
real clamp(real x, real a, real b)
Clamp x between a and b.
Definition: real_analysis.h:355
A cubic splines node for a given x interval.
Definition: splines.h:213
spline_node()
Default constructor.
Definition: splines.h:223
real operator()(real X) const
Evaluate the interpolating cubic spline (no check on the input value is performed!...
Definition: splines.h:232
real deriv(real X) const
Evaluate the derivative of the interpolating cubic spline (no check on the input value is performed)
Definition: splines.h:240
real x
Upper extreme of the interpolation interval .
Definition: splines.h:216
real a
Coefficients of the interpolating cubic spline .
Definition: splines.h:220
spline_node(real x, real a, real b, real c, real d)
Construct from and polynomial coefficients.
Definition: splines.h:226