|
Theoretica
Mathematical Library
|
Differential operators using automatic differentiation. More...
#include "dual.h"#include "dual2.h"#include "multidual.h"#include "../algebra/vec.h"#include "../algebra/mat.h"#include "../core/error.h"#include "../core/core_traits.h"#include "./autodiff_types.h"#include <functional>Go to the source code of this file.
Namespaces | |
| namespace | theoretica |
| Main namespace of the library which contains all functions and objects. | |
| namespace | theoretica::autodiff |
| Differential operators with automatic differentiation. | |
Functions | |
| template<typename DualFunction = std::function<dual(dual)>, enable_dual_func< DualFunction > = true> | |
| real | theoretica::autodiff::deriv (DualFunction f, real x) |
| Compute the derivative of a function at the given point using univariate automatic differentiation. | |
| template<typename DualFunction = std::function<dual(dual)>, enable_dual_func< DualFunction > = true> | |
| auto | theoretica::autodiff::deriv (DualFunction f) |
| Get a lambda function which computes the derivative of the given function at the given point, using automatic differentiation. | |
| template<typename Dual2Function = std::function<dual2(dual2)>, enable_dual2_func< Dual2Function > = true> | |
| real | theoretica::autodiff::deriv2 (Dual2Function f, real x) |
| Compute the second derivative of a function at the given point using univariate automatic differentiation. | |
| template<typename Dual2Function = std::function<dual2(dual2)>, enable_dual2_func< Dual2Function > = true> | |
| auto | theoretica::autodiff::deriv2 (Dual2Function f) |
| Get a lambda function which computes the second derivative of the given function at the given point, using automatic differentiation. | |
| template<typename MultidualType , typename Vector = vec<real>> | |
| auto | theoretica::autodiff::make_autodiff_arg (const Vector &x) |
| Prepare a vector of multidual numbers in "canonical" form, where the i-th element of the vector has a dual part which is the i-th canonical vector. | |
| template<typename Function , typename Vector = vec<real>, enable_scalar_field< Function > = true, enable_vector< Vector > = true> | |
| auto | theoretica::autodiff::gradient (Function f, const Vector &x) |
| Compute the gradient \(\nabla f = \sum_i^n \vec e_i \frac{\partial}{\partial x_i} f(\vec x)\) for a given \(\vec x\) of a scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) using automatic differentiation. | |
| template<typename Function , enable_scalar_field< Function > = true> | |
| auto | theoretica::autodiff::gradient (Function f) |
| Get a lambda function which computes the gradient \(\nabla f = \sum_i^n \vec e_i \frac{\partial}{\partial x_i} f(\vec x)\) of a given scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at \(\vec x\) using automatic differentiation. | |
| template<typename Function , typename Vector = vec<real>, enable_scalar_field< Function > = true, enable_vector< Vector > = true> | |
| real | theoretica::autodiff::divergence (Function f, const Vector &x) |
| Compute the divergence \(\sum_i^n \frac{\partial}{\partial x_i} f(\vec x)\) for a given \(\vec x\) of a scalar field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) using automatic differentiation. | |
| template<typename Function , enable_scalar_field< Function > = true> | |
| auto | theoretica::autodiff::divergence (Function f) |
| Get a lambda function which computes the divergence of a given function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given \(\vec x\) using automatic differentiation. | |
| template<unsigned int N = 0, unsigned int M = 0> | |
| mat< real, M, N > | theoretica::autodiff::jacobian (vec< multidual< N >, M >(*f)(vec< multidual< N >, N >), const vec< real, N > &x) |
| Compute the jacobian of a vector field of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}^M\). | |
| template<unsigned int N = 0, unsigned int M = 0> | |
| auto | theoretica::autodiff::jacobian (vec< multidual< N >, M >(*f)(vec< multidual< N >, N >)) |
| Get a lambda function which computes the jacobian of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}^M\) for a given $\vec x$. | |
| template<unsigned int N = 0> | |
| vec< real, N > | theoretica::autodiff::curl (vec< multidual< N >, N >(*f)(vec< multidual< N >, N >), const vec< real, N > &x) |
| Compute the curl for a given \(\vec x\) of a vector field defined by \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) using automatic differentiation. | |
| template<unsigned int N = 0> | |
| auto | theoretica::autodiff::curl (vec< multidual< N >, N >(*f)(vec< multidual< N >, N >)) |
| Get a lambda function which computes the curl for a given \(\vec x\) of a vector field defined by \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3\) using automatic differentiation. | |
| template<unsigned int N = 0> | |
| vec< real, N > | theoretica::autodiff::directional_derivative (multidual< N >(*f)(vec< multidual< N >, N >), const vec< real, N > &x, const vec< real, N > &v) |
| Compute the directional derivative of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\). | |
| template<unsigned int N = 0> | |
| auto | theoretica::autodiff::directional_derivative (multidual< N >(*f)(vec< multidual< N >, N >), const vec< real, N > &v) |
| Get a lambda function which computes the directional derivative of a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\). | |
| template<unsigned int N = 0> | |
| real | theoretica::autodiff::laplacian (dual2(*f)(vec< dual2, N >), const vec< real, N > &x) |
| Compute the Laplacian differential operator for a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given $\vec x$. | |
| template<unsigned int N = 0> | |
| auto | theoretica::autodiff::laplacian (dual2(*f)(vec< dual2, N >)) |
| Get a lambda function which computes the Laplacian differential operator for a generic function of the form \(f: \mathbb{R}^N \rightarrow \mathbb{R}\) at a given $\vec x$. | |
| template<unsigned int N = 0> | |
| real | theoretica::autodiff::sturm_liouville (multidual< N >(*f)(vec< multidual< N >, N >), multidual< N >(*H)(vec< multidual< N >, N >), vec< real, N > eta) |
| Compute the Sturm-Liouville operator on a generic function of the form \(f: \mathbb{R}^{2N} \rightarrow \mathbb{R}\) with respect to a given Hamiltonian function of the form \(H: \mathbb{R}^{2N} \rightarrow \mathbb{R}\) where the first N arguments are the coordinates in phase space and the last N arguments are the conjugate momenta, for a given point in phase space. | |
Differential operators using automatic differentiation.